专题论文

柔性共面超级电容器电极印制及性能

  • 李亚玲 ,
  • 李泽涛 ,
  • 王欣 ,
  • 何倩倩 ,
  • 于超 ,
  • 李路海
展开
  • 北京印刷学院, 北京市印刷电子工程技术研究中心, 北京 102600
李亚玲,副教授,研究方向为纳米材料油墨化及应用,电子信箱:liyaling@bigc.edu.cn

收稿日期: 2017-05-24

  修回日期: 2017-07-21

  网络出版日期: 2017-09-18

基金资助

北京市教委 2011绿色印刷出版技术协同创新中心建设项目(04190117029/002);北京市教委面上项目(KM201710015009);北京印刷学院科技一般项目(Eb201602);北京高等学校高水平人才交叉培养"实培计划"项目;印刷电子技术与工程学科建设项目(21090117001,04190117029/002)

Printed flexible in-plane supercapacitor electrode and its properties

  • LI Yaling ,
  • LI Zetao ,
  • WANG Xin ,
  • HE Qianqian ,
  • YU Chao ,
  • LI Luhai
Expand
  • Beijing Engineering Research Center of Printed Electronics, Beijing Institute of Graphic Communication, Beijing 102600, China

Received date: 2017-05-24

  Revised date: 2017-07-21

  Online published: 2017-09-18

摘要

柔性全固态超级电容器作为便携式、可穿戴电子的储备电源备受青睐。利用印刷电子大面积、柔性化的独特优势可大大简化柔性电极的制作工艺,以活性炭为活性材料配制油墨,并结合导电银浆,采用丝网印刷方式套印制作了柔性超级电容器电极,并将PVA-H2SO4凝胶作为电解质涂覆在活性电极上组装成柔性共面超级电容器,测试其电化学性能。结果表明,丝印柔性超级电容器电极可成功应用于柔性共面超级电容器。当采用PVA-H2SO4凝胶作为电解质时工作电压可达0.8 V。当充放电电流为0.2 mA时,柔性共面超级电容器的面积比电容达到18 mF·cm-2

本文引用格式

李亚玲 , 李泽涛 , 王欣 , 何倩倩 , 于超 , 李路海 . 柔性共面超级电容器电极印制及性能[J]. 科技导报, 2017 , 35(17) : 58 -62 . DOI: 10.3981/j.issn.1000-7857.2017.17.007

Abstract

Flexible all-solid-state supercapacitors are favored as the backup power of the portable and wearable electronic devices. With the unique advantages of large-area and flexibility of printed electronics, the manufacturing process of flexible electrodes can be greatly simplified. In this paper, activated carbon is used as active material and flexible supercapacitor electrodes are prepared by screen printing technology using activated carbon ink and conductive silver ink. Then, the flexible supercapacitor is assembled with the electrode coated with PVA-H2SO4 gel and the electrochemical properties are measured. The results show that the printed supercapacitor electrode can be successfully applied to flexible in-plane supercapacitors. The working voltage achieves 0.8 V and the areal specific capacitance of the whole device achieves 18 mF·cm-2 at a charge-discharge current of 0.2 mA.

参考文献

[1] Zhang L L, Zhao X S. Carbon-based materials as supercapacitor elec-trodes[J]. Chemical Society Reviews, 2009, 38(9):2520-2531.
[2] Lv W, Li Z, Deng Y, et al. Graphene-based materials for electrochemi-cal energy storage devices:Opportunities and challenges[J]. Energy Stor-age Materials, 2016(2):107-138.
[3] Chen D, Feng H, Li J. Graphene oxide:Preparation, functionalization, and electrochemical applications[J]. Chemical Reviews, 2012, 112(11):6027-6053.
[4] Wang Y, Guo J, Wang T, et al. Mesoporous transition metal oxides for supercapacitors[J]. Nanomaterials, 2015, 5(4):1667-1689.
[5] Li Y L, Li L H, Chu G W, et al. Facile preparation of MnO2 with large surface area in a rotor-stator reactor for supercapacitors[J]. Internation-al Journal of Electrochemical Science, 2016, 11(11):9644-9655.
[6] Majeed A, Ullah W, Anwar A W, et al. Graphene-metal oxides/hydrox-ide nanocomposite materials:Fabrication advancements and supercapac-itive performance[J]. Journal of Alloys and Compounds, 2016, 671:1-10.
[7] Li Y L, Li L H, Cao M J, et al. Preparation of nickel-cobalt layered double hydroxides for the battery-like electrodes in rotor-stator reactor[J]. International Journal of Electrochemical Science, 2017, 12:3432-3442.
[8] Li X, Li Q, Wu Y, et al. Two-dimensional, porous nickel-cobalt sulfide for high-performance asymmetric supercapacitors[J]. ACS Applied Mate-rial & Interfaces, 2015, 7(34):19316-19323.
[9] Khan M, Tahir M N, Adil S F, et al. Graphene based metal and metal oxide nanocomposites:Synthesis, properties and their applications[J]. Journal of Materials Chemistry A, 2015, 3(37):18753-18808.
[10] 刘奇. 基于三维网络结构的石墨烯基柔性超级电容器电极的制备与性能研究[D]. 上海:东华大学材料学院, 2016. Liu Qi. Preparation and performance of graphene based electrodes with 3-dimensional structure[D]. Shanghai:School of Materials Science and engineering, Donghua University, 2016.
[11] Shen B, Lang J, Guo R, et al. Engineering the electrochemical capaci-tive properties of microsupercapacitors based on graphene quantum dots/MnO2 using ionic liquid gel electrolytes[J]. ACS Applied Material & Interfaces, 2015, 7(45):25378-25389.
[12] Ujjain S K, Sahu V, Sharma R K, et al. High performance, all solid state, flexible supercapacitor based on Ionic liquid functionalized gra-phene[J]. Electrochimica Acta, 2015, 157:245-251.
[13] Lau P H, Takei K, Wang C, et al. Fully printed, high performance car-bon nanotube thin-film transistors on flexible substrates[J]. Nano Let-ters, 2013, 13(8):3864-3869.
[14] Cai L, Zhang S, Miao J, et al. Fully printed stretchable thin-film tran-sistors and integrated logic circuits[J]. Acs Nano, 2016, 10(12):11459-11468.
[15] Harada S, Kanao K, Yamamoto Y, et al. Fully printed flexible finger-print-like three-axis tactile and slip force and temperature sensors for artificial skin[J]. Acs Nano, 2014, 8(12):12851-12857.
[16] Bade S G R, Li J, Shan X, et al. Fully printed halide perovskite lightemitting diodes with silver nanowire electrodes[J]. Acs Nano, 2016, 10(2):1795-1801.
[17] 周乾隆. 基于石墨烯柔性超级电容器电极材料及器件研究[D]. 成都:电子科技大学微电子学与固体电子学学院, 2016. Zhou Qianlong. The research of graphene based flexible supercapacitor electrode materials and devices[D]. Chengdu:School of Microelectronics and Solid-State Electronics, University of Electronic Science and Technology of China, 2016.
[18] Peng X, Peng L, Wu C, et al. Two dimensional nanomaterials for flexi-ble supercapacitors[J]. Chemical Society Reviews, 2014, 43(10):3303-3323.
[19] Shao Y, Elkady M F, Wang L J, et al. Graphene-based materials for flexible supercapacitors[J]. Chemical Society Reviews, 2015, 44(11):3639-3665.
[20] Ramadoss A, Yoon K Y, Kwak M J, et al. Fully flexible, lightweight, high performance all-solid-state supercapacitor based on 3-dimen-sional-graphene/graphite-paper[J]. Journal of Power Sources, 2017, 337:159-165.
[21] Wei D, Wakeham S J, Ng T W, et al. Transparent, flexible and solidstate supercapacitors based on room temperature ionic liquid gel[J]. Electrochemistry Communications, 2009, 11(12):2285-2287.
[22] Kim D, Lee G, Kim D, et al. Air-stable, high-performance, flexible microsupercapacitor with patterned ionogel electrolyte[J]. ACS Appl Mater Interfaces, 2015, 7(8):4608-4615.
[23] Hong S Y, Yoon J, Jin S W, et al. High-density, stretchable, all-sol-id-state microsupercapacitor arrays[J]. Acs Nano, 2014, 8(9):8844-8855.
[24] Lee K, Lee H, Shin Y, et al. Highly transparent and flexible superca-pacitors using graphene-graphene quantum dots chelate[J]. Nano Ener-gy, 2016, 26:746-754.
[25] Liu Z, Teng F, Chang C, et al. Charge storage performances of microsupercapacitor predominated by two-dimensional (2D) crystal structure[J]. Nano Energy, 2016, 27:58-67.
[26] Lee S, Lee S H, Kim T H, et al. Geometry-controllable graphene lay-ers and their application for supercapacitors[J]. ACS Applied Material & Interfaces, 2015, 7(15):8070-8075.
[27] Zhou Q, Ye X, Wan Z, et al. A three-dimensional flexible supercapac-itor with enhanced performance based on lightweight, conductive gra-phene-cotton fabric electrode[J]. Journal of Power Sources, 2015, 296:186-196.
[28] Sun L, Wang X, Zhang K, et al. Metal-free SWNT/carbon/MnO2 hy-brid electrode for high performance coplanar micro-supercapacitors[J]. Nano Energy, 2016, 22:11-18.
[29] Yun J, Lim Y, Jang G N, et al. Stretchable patterned graphene gas sensor driven by integrated micro-supercapacitor array[J]. Nano Ener-gy, 2016, 19:401-414.
[30] Peng L, Peng X, Liu B, et al. Ultrathin two-dimensional MnO2/gra-phene hybrid nanostructures for high-performance, flexible planar su-percapacitors[J]. Nano Letters, 2013, 13(5):2151-2157.
[31] 叶星柯, 周乾隆, 万中全, 等. 柔性超级电容器电极材料与器件研究进展[J]. 化学通报, 2017, 80(1):10-33, 76. Ye Xingke, Zhou Qianlong, Wan Zhongquan, et al. Research progress in electrode materials and devices of flexible supercapacitors[J]. Chemistry Bulletin, 2017, 80(1):10-33, 76.
[32] Feng J, Sun X, Wu C, et al. Metallic few-layered VS2 ultrathin nanosheets:High two-dimensional conductivity for in-plane superca-pacitors[J]. Journal of the American Chemical Society, 2011, 133(44):17832-17838.
[33] Xie B H, Wang Y, Lai W H, et al. Laser-processed graphene based micro-supercapacitors for ultrathin, rollable, compact and designable energy storage components[J]. Nano Energy, 2016, 26:276-285.
[34] 李亚玲, 辛智青, 曹梅娟, 等. 一种柔性超级电容器电极的制作方法:106783220A[P]. 2017-05-31. Li Yaling, Xin Zhiqing, Cao Meijuan, et al. A preparation method of flexible supercapacitor electrodes:106783220A[P]. 2017-05-31.
文章导航

/