研究论文

火星盐类研究进展

  • 孔维刚 ,
  • 郑绵平
展开
  • 中国地质科学院矿产资源研究所;国土资源部盐湖资源与环境重点实验室, 北京 100037
孔维刚,副研究员,研究方向为行星盐类矿物学、矿床学,电子信箱:kwg@cags.ac.cn

收稿日期: 2016-10-28

  修回日期: 2017-04-07

  网络出版日期: 2017-09-18

基金资助

国家自然科学基金项目(41303049)

Progresses of studies on Mars salts

  • KONG Weigang ,
  • ZHENG Mianping
Expand
  • MLR Key Laboratory of Saline Lake Resources and Environments, Institute of Mineral Resources, CAGS, Beijing 100037, China

Received date: 2016-10-28

  Revised date: 2017-04-07

  Online published: 2017-09-18

摘要

因携带水相关地质过程及环境的丰富信息,进而与生命起源密切相关,行星盐类研究受到大量科研工作者的关注。好奇号登陆之后,火星盐类研究取得了一些新进展。例如,在着陆区泥岩中发现了黄钾铁矾;在泥岩及泥岩砂岩的不整合接触面发现了石膏脉;在风沉积及原位沉积岩中发现了硝酸盐。此外,通过遥感手段,还发现火星新出现的斜坡沟渠可能是由含高氯酸盐高浓卤水冲击形成的。这些新进展再次表明了盐类对于火星科学的重要性。结合已有研究,凝练了火星盐类研究存在的重要科学问题,展望了中国未来火星探测研究。

本文引用格式

孔维刚 , 郑绵平 . 火星盐类研究进展[J]. 科技导报, 2017 , 35(17) : 84 -87 . DOI: 10.3981/j.issn.1000-7857.2017.17.011

Abstract

Salts carry rich information about water related geological processes and aqueous environments,and further are closely related to the origin of life, thus salts on other planets have attracted focus of numerous studies, and the study of Mars salts deserves to be one of the major science goals for future China Mars exploration. For example, jarosite has been detected from mudstone at the landing region, gypsum vein in mudstone and in the unconformable surface have confirmed by curiosity rover, and nitrates have been indicated from windblown deposits and from sedimentary rocks. In addition, perchlorate has been identified by CRISM close to the recurring slope lineae, indicating that the flow of liquid perchlorate brine may account for this recently formed surface feature. All these new findings address again the importance of salts for Mars science. Finally, we propose several key science questions about Mars salts based on current knowledge, and give some prospects for future China Mars exploration.

参考文献

[1] Clark B C, Baird A K, Rose H J, et al. Inorganic analyses of Martian surface samples at the Viking landing sites[J]. Science, 1976, 194(4271):1283-1288.
[2] Clark B C, Hart D C V. The salts of Mars[J]. Icarus, 1981, 45(2):370-378.
[3] Saunders R S, Arvidson R E, Badhwar G D, et al. 2001 Mars Odyssey mission summary[J]. Space Science Review, 2004, 110(1):1-36.
[4] Chicarro A, Martin P, Trautner R. The Mars Express mission:An over-view[J]. 2004, 1240:3-13.
[5] Zurek R W, Smrekar S E. An overview of the Mars Reconnaissance Or-biter (MRO) science mission[J]. Journal of Geophysical Research, 2007, 112(E5):1-5.
[6] Golombek M P, Cook R A, Economou T, et al. Overview of the Mars Pathfinder mission and assessment of landing site predictions[J]. Sci-ence, 1997, 278(5344):1743-1748.
[7] Squyres S W, Arvidson R E, Baumgartner E T, et al. Athena Mars rov-er science investigation[J]. Journal of Geophysical Research, 2003, 108(E12):8062.
[8] Smith P H, Tamppari L, Arvidson R E, et al. Introduction to special section on the Phoenix Mission:Landing site characterization experi-ments, mission overviews, and expected science[J]. Journal of Geophysi-cal Research, 2008, 113(3):5146-5163.
[9] Grotzinger J P, Crisp J, Vasavada A R, et al. Mars Science Laboratory mission and science investigation[J]. Space Science Review, 2012, 170(1/4):5-56.
[10] Zheng M P, Kong W G, Zhang X F, et al. A comparative analysis of evaporate sediments on Earth and Mars:Implications for the climate change on Mars[J]. Acta Geologica Sinica, 2013, 87(3):885-897.
[11] Mccord T B, Hansen G B, Fanale F P, et al. Salts on Europa's surface detected by Galileo's near infrared mapping spectrometer[J]. Science, 1998, 280(5367):1242-1245.
[12] Postberg F, Kempf S, Schmidt J, et al. Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus[J]. Nature, 2009, 459(7250):1098-1101.
[13] 孔维刚, 郑绵平. 行星盐类研究的重要性[J]. 科技导报, 2014, 32(35):15-21. Kong Weigang, Zheng Miangping. Importance of salt studies in planetary science[J]. Science & Technology Review, 2014, 32(35):15-21.
[14] Kong W G, Wang A, Chou I M. Experimental determination of the phase boundary between kornelite and pentahydrated ferric sulfate at 0.1 MPa[J]. Chemical Geology, 2011, 284(3):333-338.
[15] Kong W G, Zheng M P, Kong F J, et al. Sulfate-bearing deposits at Dalangtan Playa and their implication for the formation and preserva-tion of Martian salts[J]. American Mineralogist, 2014, 99(2/3):283-290.
[16] Ehlmann B L, Edwards C S. Mineralogy of the Martian surface[J]. An-nual Review of Earth and Planetary Sciences, 2014, 42(1):291-315.
[17] Arvidson R E. Aqueous history of Mars as inferred from landed mis-sion measurements of rocks, soils, and water ice[J]. Journal of Geo-physical Research Planets, 2016, 121(1):1602-1626.
[18] Grotzinger J P, Sumner D Y, Kah L C, et al. A habitable fluvio-lacus-trine environment at Yellowknife Bay, Gale Crater, Mars[J]. Science, 2014, 343(6169):1242777.
[19] Grotzinger J P, Gupta S, Malin M C, et al. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars[J]. Sci-ence, 2015, 350(6257):7575.
[20] Cavanagh P D, Bish D L, Blake D F, et al. Confidence Hills mineralo-gy and CheMin results from base of Mt. Sharp, Pahrump Hills, Gale Crater, Mars[C]//Lunar and Planetary Science Conference XLVI. Hous-ton:LPI, 2015, 2735.
[21] Vaniman D T, Bish D L, Ming D W, et al. Mineralogy of a mudstone at Yellowknife Bay, Gale crater, Mars[J]. Science, 2014, 343(6169):1243480.1-1243480.14.
[22] Nachon S M, Clegg S M, Mangold N, et al. Calcium sulfate veins char-acterized by ChemCam/Curiosity at Gale Crater, Mars[J]. Journal of Geophysical Research Planets, 2014, 119(9):1991-2016.
[23] Schieber J, Bish D, Coleman M, et al. Encounters with an unearthly mudstone:Understanding the first mudstone found on Mars[J]. Sedi-mentology, 2016, Doi:10.1111/sed.12318.
[24] Hussain M, Warren J K. Nodular and enterolithic gypsum:The "Sab-kha-tization" of Salt Flat Playa, west Texas[J]. Sedimentary Geology, 1989, 63(1/3):13-24.
[25] Stern J C, Sutter B, Freissinetet C, et al. Evidence for indigenous nitro-gen in sedimentary and Aeolian deposits from the Curiosity rover in-vestigations at Gale Crater, Mars[J]. Proceedings of the National Acad-emy of Sciences, 2015, 112(14):4245-4250.
[26] Stern J C, Sutter B, Jackson W A, et al. The nitrate/(per)chlorate rela-tionship on Mars[J]. Geophysical Research Letters, 2017, doi:10.1002/2016GL072199.
[27] Hecht M H, Kounaves S P, Quinn R C, et al. Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix Lander site[J]. Science, 2009, 325(5936):64-67.
[28] Toner J D, Catling D C, Light B. Soluble salts at the Phoenix Lander site, Mars:A reanalysis of the Wet Chemistry Laboratory data[J]. Geo-chimica et Cosmochimica Acta, 2014, 136:142-168.
[29] Ojha L, Wilhelm M B, Murchie S L, et al. Spectral evidence for hy-drated salts in recurring slope lineae on Mars[J]. Nature Geoscience, 2015, 8(11):829-832.
[30] Zheng M P, Wang A, Kong F J, et al. Saline lakes on Qinghai-Tibet Plateau and salts on Mars[C]//Lunar and Planetary Science Conference XL. Houston:LPI, 2009:1454.
[31] Kong F J, Kong W G, Hu B. et al. Meteorological data, surface temper-ature and moisture conditions at the Dalangtan Mars analogous site, in Qinghai-Tibet Plateau, China[C]//Lunar and Planetary Science Confer-ence XLIV. Houston:LPI, 2013:1336.
[32] Xiao L, Wang J, Dang Y, et al. A new terrestrial analogue site for Mars research:The Qaidam Basin, Tibetan Plateau (NW China)[J]. Earth Science Reviews, 2016, 164:84-101.
文章导航

/