[1] Clark B C, Baird A K, Rose H J, et al. Inorganic analyses of Martian surface samples at the Viking landing sites[J]. Science, 1976, 194(4271):1283-1288.
[2] Clark B C, Hart D C V. The salts of Mars[J]. Icarus, 1981, 45(2):370-378.
[3] Saunders R S, Arvidson R E, Badhwar G D, et al. 2001 Mars Odyssey mission summary[J]. Space Science Review, 2004, 110(1):1-36.
[4] Chicarro A, Martin P, Trautner R. The Mars Express mission:An over-view[J]. 2004, 1240:3-13.
[5] Zurek R W, Smrekar S E. An overview of the Mars Reconnaissance Or-biter (MRO) science mission[J]. Journal of Geophysical Research, 2007, 112(E5):1-5.
[6] Golombek M P, Cook R A, Economou T, et al. Overview of the Mars Pathfinder mission and assessment of landing site predictions[J]. Sci-ence, 1997, 278(5344):1743-1748.
[7] Squyres S W, Arvidson R E, Baumgartner E T, et al. Athena Mars rov-er science investigation[J]. Journal of Geophysical Research, 2003, 108(E12):8062.
[8] Smith P H, Tamppari L, Arvidson R E, et al. Introduction to special section on the Phoenix Mission:Landing site characterization experi-ments, mission overviews, and expected science[J]. Journal of Geophysi-cal Research, 2008, 113(3):5146-5163.
[9] Grotzinger J P, Crisp J, Vasavada A R, et al. Mars Science Laboratory mission and science investigation[J]. Space Science Review, 2012, 170(1/4):5-56.
[10] Zheng M P, Kong W G, Zhang X F, et al. A comparative analysis of evaporate sediments on Earth and Mars:Implications for the climate change on Mars[J]. Acta Geologica Sinica, 2013, 87(3):885-897.
[11] Mccord T B, Hansen G B, Fanale F P, et al. Salts on Europa's surface detected by Galileo's near infrared mapping spectrometer[J]. Science, 1998, 280(5367):1242-1245.
[12] Postberg F, Kempf S, Schmidt J, et al. Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus[J]. Nature, 2009, 459(7250):1098-1101.
[13] 孔维刚, 郑绵平. 行星盐类研究的重要性[J]. 科技导报, 2014, 32(35):15-21. Kong Weigang, Zheng Miangping. Importance of salt studies in planetary science[J]. Science & Technology Review, 2014, 32(35):15-21.
[14] Kong W G, Wang A, Chou I M. Experimental determination of the phase boundary between kornelite and pentahydrated ferric sulfate at 0.1 MPa[J]. Chemical Geology, 2011, 284(3):333-338.
[15] Kong W G, Zheng M P, Kong F J, et al. Sulfate-bearing deposits at Dalangtan Playa and their implication for the formation and preserva-tion of Martian salts[J]. American Mineralogist, 2014, 99(2/3):283-290.
[16] Ehlmann B L, Edwards C S. Mineralogy of the Martian surface[J]. An-nual Review of Earth and Planetary Sciences, 2014, 42(1):291-315.
[17] Arvidson R E. Aqueous history of Mars as inferred from landed mis-sion measurements of rocks, soils, and water ice[J]. Journal of Geo-physical Research Planets, 2016, 121(1):1602-1626.
[18] Grotzinger J P, Sumner D Y, Kah L C, et al. A habitable fluvio-lacus-trine environment at Yellowknife Bay, Gale Crater, Mars[J]. Science, 2014, 343(6169):1242777.
[19] Grotzinger J P, Gupta S, Malin M C, et al. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars[J]. Sci-ence, 2015, 350(6257):7575.
[20] Cavanagh P D, Bish D L, Blake D F, et al. Confidence Hills mineralo-gy and CheMin results from base of Mt. Sharp, Pahrump Hills, Gale Crater, Mars[C]//Lunar and Planetary Science Conference XLVI. Hous-ton:LPI, 2015, 2735.
[21] Vaniman D T, Bish D L, Ming D W, et al. Mineralogy of a mudstone at Yellowknife Bay, Gale crater, Mars[J]. Science, 2014, 343(6169):1243480.1-1243480.14.
[22] Nachon S M, Clegg S M, Mangold N, et al. Calcium sulfate veins char-acterized by ChemCam/Curiosity at Gale Crater, Mars[J]. Journal of Geophysical Research Planets, 2014, 119(9):1991-2016.
[23] Schieber J, Bish D, Coleman M, et al. Encounters with an unearthly mudstone:Understanding the first mudstone found on Mars[J]. Sedi-mentology, 2016, Doi:10.1111/sed.12318.
[24] Hussain M, Warren J K. Nodular and enterolithic gypsum:The "Sab-kha-tization" of Salt Flat Playa, west Texas[J]. Sedimentary Geology, 1989, 63(1/3):13-24.
[25] Stern J C, Sutter B, Freissinetet C, et al. Evidence for indigenous nitro-gen in sedimentary and Aeolian deposits from the Curiosity rover in-vestigations at Gale Crater, Mars[J]. Proceedings of the National Acad-emy of Sciences, 2015, 112(14):4245-4250.
[26] Stern J C, Sutter B, Jackson W A, et al. The nitrate/(per)chlorate rela-tionship on Mars[J]. Geophysical Research Letters, 2017, doi:10.1002/2016GL072199.
[27] Hecht M H, Kounaves S P, Quinn R C, et al. Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix Lander site[J]. Science, 2009, 325(5936):64-67.
[28] Toner J D, Catling D C, Light B. Soluble salts at the Phoenix Lander site, Mars:A reanalysis of the Wet Chemistry Laboratory data[J]. Geo-chimica et Cosmochimica Acta, 2014, 136:142-168.
[29] Ojha L, Wilhelm M B, Murchie S L, et al. Spectral evidence for hy-drated salts in recurring slope lineae on Mars[J]. Nature Geoscience, 2015, 8(11):829-832.
[30] Zheng M P, Wang A, Kong F J, et al. Saline lakes on Qinghai-Tibet Plateau and salts on Mars[C]//Lunar and Planetary Science Conference XL. Houston:LPI, 2009:1454.
[31] Kong F J, Kong W G, Hu B. et al. Meteorological data, surface temper-ature and moisture conditions at the Dalangtan Mars analogous site, in Qinghai-Tibet Plateau, China[C]//Lunar and Planetary Science Confer-ence XLIV. Houston:LPI, 2013:1336.
[32] Xiao L, Wang J, Dang Y, et al. A new terrestrial analogue site for Mars research:The Qaidam Basin, Tibetan Plateau (NW China)[J]. Earth Science Reviews, 2016, 164:84-101.