生物吸附法是一种新兴的废水处理方法,高效廉价生物吸附剂的研发是生物吸附技术研究的关键之一。以甜高粱秸秆发酵产乙醇残渣(FSSR)为吸附剂,研究了其对Pb(Ⅱ)的吸附特性。研究结果表明,FSSR对Pb(Ⅱ)的吸附过程符合拟二级动力学模型,吸附过程是化学吸附过程。发酵后材料对Pb(Ⅱ)的吸附容量有显著提高,平衡时吸附容量由3.32 mg/g提高到6.92 mg/g。当温度由10℃升高到40℃时,FSSR对Pb(Ⅱ)最大吸附容量由5.92 mg/g提高到7.23 mg/g,等温吸附过程符合Langmuir模型。多元体系中FSSR对离子的选择性为Pb(Ⅱ)> Cu(Ⅱ)> Zn(Ⅱ)。发酵后材料有更多的活性官能团裸露在材料的表面,为吸附反应的发生提供了有利的条件,可以提高材料对金属离子的吸附容量。
The biosorption is a new technology, which can be widely applied for the removal of heavy metals from wastewater. The development of an efficient and low-cost adsorbent is a key in the biosorption technology. The adsorption performance of Pb(Ⅱ) by the fermented sweet sorghum stalks (FSSR) is discussed in this paper. The adsorption process is a chemical one and follows the pseudo-second order kinetics. After fermented, the equilibrium adsorption capacity of the material is increased from 3.32 mg/g to 6.92 mg/g. The isotherm adsorption is fitted well with the linear Langmuir model. When the temperature rises from 10℃ to 40℃, the maximum adsorption capacity of Pb (Ⅱ) is increased from 5.92 mg/g to 7.23 mg/g. In binary and ternary systems, the adsorption capacities are in the order of Pb(Ⅱ) > Cu (Ⅱ) > Zn(Ⅱ). There are more active functional groups on the surface of the stalk after fermentation, and these changes will be beneficial to the adsorption reaction and can improve the adsorption capacity.
[1] 毕斌, 卢少勇, 于亚军, 等. 湖泊沉积物重金属赋存形态研究进展[J]. 科技导报, 2016, 34(18):162-169. Bi Bin, Lu Shaoyong, Yu Yajun, et al. Research progress on the specia-tion of heavy metals in lake sediments[J]. Science & Technology Re-view, 2016, 34(18):162-169.
[2] 文永林, 刘攀, 汤琪. 农林废弃物吸附脱除废水中重金属研究进展[J]. 化工进展, 2016, 35(4):1208-1215. Wen Yonglin, Liu Pan, Tang Qi. Review of removal of heavy metal ions from wastewater with agricultural and forestry waste as adsorbent[J]. Chemical Industry and Engineering Progress, 2016, 35(4):1208-1215.
[3] Dang V B H, Doan H D, Dang-Vu T, et al. Equilibrium and kinetics of biosorption of cadmium(Ⅱ) and copper(Ⅱ) ions by wheat straw[J]. Biore-source Technology, 2009, 100(1):211-219.
[4] Wang J Y, Cui H, Cui C W, et al. Biosorption of copper(Ⅱ) from aque-ous solutions by Aspergillus niger-treated rice straw[J]. Ecological Engi-neering, 2016, 95:793-799.
[5] Vafakhah S, Bahrololoom M E, Bazarganlari R. Removal of copper ions from electroplating effluent solutions with native corn cob and corn stalk and chemically modified corn stalk[J]. Journal of Environmental Chemical Engineering, 2014, 2(1):356-361.
[6] Sarkar D, Das S K, Bandyopadhyay A. Analysis of bio-sorption of Cr (VI) onto raw rice husk by a hybrid theoretical model using results of batch experiments[J]. Adsorption Science & Technolohy, 2013, 31(8):747-766.
[7] Rafatullah M, Sulaiman O, Hashim R, et al. Adsorption of copper (Ⅱ), chromium (Ⅲ), nickel (Ⅱ) and lead (Ⅱ) ions from aqueous solutions by meranti sawdust[J]. Journal of Hazardous Materials, 2009, 170(2):969-977.
[8] Kumar K V, Sivanesan S. Selection of optimum sorption kinetics:com-parison of linear and non-linear method[J]. Journal of Hazardous Mate-rials, 2006, 134(1):277-279.
[9] Ho Y S. Review of second-order models for adsorption systems[J]. Jour-nal of Hazardous Materials, 2006, 136(3):681-689.
[10] Pérez-Marín A B, Zapata V M, Ortuño J F, et al. Removal of cadmi-um from aqueous solutions by adsorption onto orange waste[J]. Journal of Hazardous Material, 2007, 139(1):122-131.
[11] Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. Journal of the American Chemical Society, 1918, 40(9):1361-1403.
[12] Tofighy M A, Mohammadi T. Adsorption of divalent heavy metal ions from water using carbon nanotube sheets[J]. Journal of Hazardous Ma-terials, 2011, 185(1):140-147.
[13] Allen S J, Gan Q, Matthews R, et al. Comparison of optimised iso-therm models for basic dye adsorption by kudzu[J]. Bioresource Tech-nology, 2003, 88(2):143-152.
[14] Redlich O, Peterson D L. A useful adsorption isotherm[J]. Journal of Physical Chemictry, 1959, 63(6):1024-1024.
[15] Asasian N, Kaghazchi T, Soleimani M. Elimination of mercury by ad-sorption onto activated carbon prepared from the biomass material[J]. Journal of Industrial And Engineering chemistry, 2012, 18(1):283-289.
[16] Reddy D H K, Seshaiah K, Reddy A V R, et al. Optimization of Cd (Ⅱ), Cu (Ⅱ) and Ni (Ⅱ) biosorption by chemically modified Moringa oleifera leaves powder[J]. Carbohydrate Polymers, 2012, 88(3):1077-1086.
[17] 陈素红.玉米秸秆的改性及其对六价铬离子吸附性能的研究[D]. 济南:山东大学, 2012. Chen Suhong. Study on the modification of corn stalks and its adsorp-tion properties of hexavalent chromium ion[D]. Jinan:Shandong Uni-versity, 2012.
[18] 李荣华, 岳庆玲, 杨亚提, 等. 巯基改性玉米秸秆吸附Hg(Ⅱ)的热力学特征研究[J]. 环境科学学报, 2012, 32(10):2435-2442. Li Ronghua, Yue Qingling, Yang Yati, et al. Thermodynamics of mer-cury ions adsorption by thiol-modified corn stalk[J]. Acta Scientiae Circumstantiae, 2012, 32(10):2435-2442.
[19] 于春光. 改性山核桃壳吸附水中重金属的效能研究[D]. 哈尔滨:哈尔滨工业大学, 2013. Yu Chunguang. The study of adsorption efficiency of heavy metal from aquous solution using modified chinese walnut shell[D]. Harbin:Har-bin Institute of Technology, 2013.
[20] Xue W B, Yi A H, Zhang Z Q, et al. A new competitive adsorption isothermal model of heavy metals in soils[J]. Pedosphere, 2009, 19(2):251-257.
[21] Dong J, Hu J, Wang JL. Radiation-induced grafting of sweet sorghum stalk for copper removal from aqueous solution[J]. Journal of Hazard-ous Materials, 2013, 262(15):845-852.
[22] Takács E, Wojnárovits L, Földváry C, et al. Radiation activation of cotton-cellulose prior to alkali treatment[J]. Research on Chemical In-termediates, 2001, 27(7-8):837-845.
[23] Wang S L, Lee J F. Reaction mechanism of hexavalent chromium with cellulose[J]. Chemical Engineering Journal, 2011, 174(1):289-295.