专题论文

视觉信息加工及其脑机制

  • 鲍敏 ,
  • 黄昌兵 ,
  • 王莉 ,
  • 张弢 ,
  • 蒋毅
展开
  • 1. 中国科学院心理研究所, 北京 100101;
    2. 中国科学院大学心理学系, 北京 100049
鲍敏,研究员,研究方向为视知觉可塑性,电子信箱:baom@psych.ac.cn

收稿日期: 2017-08-01

  修回日期: 2017-09-20

  网络出版日期: 2017-10-18

基金资助

国家自然科学基金项目(31525011,31671137,31470983,31230032,31371030)

Visual information processing and its brain mechanism

  • BAO Min ,
  • HUANG Changbing ,
  • WANG Li ,
  • ZHANG Tao ,
  • JIANG Yi
Expand
  • 1. Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China;
    2. Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2017-08-01

  Revised date: 2017-09-20

  Online published: 2017-10-18

摘要

视觉是人们感知外部世界最重要的途径之一。视觉信号通过视网膜接收后传递到大脑皮层进行加工处理,最终形成人们所意识到的画面。目前为止,已有大量研究从不同水平不同角度探讨大脑如何对视觉信息进行加工和表征,但仍有很多未解的问题。本文综述了视觉信息加工的研究进展,回顾了脑视觉信息加工过程及组织形式,总结了近年来有关视觉可塑性、知觉学习、生物社会信息知觉等方面的研究进展。

本文引用格式

鲍敏 , 黄昌兵 , 王莉 , 张弢 , 蒋毅 . 视觉信息加工及其脑机制[J]. 科技导报, 2017 , 35(19) : 15 -20 . DOI: 10.3981/j.issn.1000-7857.2017.19.001

Abstract

Vision is often recognized as one of the most important senses, as we get much useful information about the world around us from what we see. In this paper we systematically review the research progress on visual information processing. We first focus on the key questions about how the brain processes and represents visual information. Then, we discuss the recent work on visual plasticity, perceptual learning and bio-social information perception, offering a new understanding of visual information processing and its brain mechanism.

参考文献

[1] Blasdel G G, Lund J S. Termination of afferent axons in macaque stri-ate cortex[J]. Journal of Neuroscience the Official Journal of the Society for Neuroscience, 1983, 3(7):1389-1413.
[2] Tsumoto T, Creutzfeldt O D, Legéndy C R. Functional organization of the corticofugal system from visual cortex to lateral geniculate nucleus in the cat[J]. Experimental Brain Research, 1978, 32(3):345-364.
[3] Stone J. Parallel processing in the visual system[M]. New York:Ple-num, 1983.
[4] Hubel D H, Wiesel T N. Receptive fields of single neurones in the cat's striate cortex[J]. Journal of Physiology, 1959, 148(3):574-591.
[5] Maunsell J H, Newsome W T. Visual processing in monkey extrastriate cortex[J]. Annual Review of Neuroscience, 1987, 10(1):363-401.
[6] Britten K H, Van Wezel R J. Area MST and heading perception in ma-caque monkeys[J]. Cerebral Cortex, 2002, 12(7):692-701.
[7] Zhang T, Heuer H W, Britten K H. Parietal area VIP neuronal respons-es to heading stimuli are encoded in head-centered coordinates[J]. Neu-ron, 2004, 42(6):993-1001.
[8] Merigan W H, Maunsell J H. How parallel are the primate visual path-ways?[J]. Annual Review of Neuroscience, 1993, 16(16):369-402.
[9] Wiesel T N, Hubel D H. Single-cell responses in striate cortex of kit-tens deprived of vision in one eye[J]. Journal of Neurophysiology, 1963, 26:1003-1017.
[10] Hubel D H, Wiesel T N. Ferrier lecture. Functional architecture of ma-caque monkey visual cortex[J]. Proceedings of the Royal Society of London B:Biological Sciences, 1977, 198(1130):1-59.
[11] Dews P B, Wiesel T N. Consequences of monocular deprivation on vi-sual behaviour in kittens[J]. The Journal of Physiology, 1970, 206(2):437-455.
[12] Holmes J M, Repka M X, Kraker R T, et al. The treatment of amblyo-pia[J]. Strabismus, 2006, 14(1):37-42.
[13] Baker C I, Peli E, Knouf N, et al. Reorganization of visual processing in macular degeneration[J]. Journal of Neuroscience, 2005, 25(3):614-618.
[14] Dilks D D, Julian J B, Peli E, et al. Reorganization of visual process-ing in age-related macular degeneration depends on foveal loss[J]. Op-tometry and Vision Science, 2014, 91(8):e199-206.
[15] Kohn A. Visual adaptation:Physiology, mechanisms, and functional benefits[J]. Journal of Neurophysiology, 2007, 97(5):3155-3164.
[16] Fang F, Murray S O, Kersten D, et al. Orientation-tuned FMRI adapta-tion in human visual cortex[J]. Journal of Neurophysiology, 2005, 94(6):4188-4195.
[17] Chaudhuri A. Modulation of the motion aftereffect by selective atten-tion[J]. Nature, 1990, 344(6261):60-62.
[18] Clifford C W, Wyatt A M, Arnold D H, et al. Orthogonal adaptation improves orientation discrimination[J]. Vision Research, 2001, 41(2):151-159.
[19] Tanaka Y, Miyauchi S, Misaki M, et al. Mirror symmetrical transfer of perceptual learning by prism adaptation[J]. Vision Research, 2007, 47(10):1350-1361.
[20] Mesik J, Bao M, Engel S A. Spontaneous recovery of motion and face aftereffects[J]. Vision Research, 2013, 89:72-78.
[21] Bao M, Engel S A. Distinct mechanism for long-term contrast adapta-tion[J]. PNAS, 2012, 109(15):5898-5903.
[22] Bao M, Fast E, Mesik J, et al. Distinct mechanisms control contrast ad-aptation over different timescales[J]. Journal of Vision, 2013, 13(10):1-11.
[23] Mesik J, Bao M, Engel S A. Spontaneous recovery of motion and face aftereffects[J]. Vision Res, 2013, 89:72-78.
[24] Mei G, Dong X, Dong B, et al. Spontaneous recovery of effects of con-trast adaptation without awareness[J]. Frontiers Psychology, 2015, 6:1464.
[25] Mei G, Dong X, Bao M. The timescale of adaptation at early and midlevel stages of visual processing[J]. Journal of Vision, 2017, 17(1):1-7.
[26] Walsh V, Kulikowski J. Perceptual constancy:Why things look as they do[M]. Cambridge:Cambridge University Press, 1998.
[27] Sagi D. Perceptual learning in vision research[J]. Vision Research, 2011, 51(13):1552-1566.
[28] Li W, Piëch V, Gilbert C D. Learning to link visual contours[J]. Neu-ron, 2008, 57(3):442-451.
[29] Schoups A, Vogels R, Qian N, et al. Practising orientation identifica-tion improves orientation coding in V1 neurons[J]. Nature, 2001, 412(6846):549-553.
[30] Yao H, Shi L, Han F, et al. Rapid learning in cortical coding of visual scenes[J]. Nature Neuroscience, 2007, 10(6):772-778.
[31] Salazar R F, Kayser C, König P. Effects of training on neuronal activi-ty and interactions in primary and higher visual cortices in the alert cat[J]. Journal of Neuroscience, 2004, 24(7):1627-1636.
[32] Poggio T, Fahle M, Edelman S. Fast perceptual learning in visual hy-peracuity[J]. Science, 1992, 256(5059):1018-1021.
[33] Sowden P T, Rose D, Davies I R. Perceptual learning of luminance contrast detection:Specific for spatial frequency and retinal location but not orientation[J]. Vision Research, 2002, 42(10):1249-1258.
[34] Tanaka J W, Curran T, Sheinberg D L. The training and transfer of re-al-world perceptual expertise[J]. Psychological Science, 2005, 16(2):145-151.
[35] Xiao L-Q, Zhang J-Y, Wang R, et al. Complete transfer of perceptual learning across retinal locations enabled by double training[J]. Current Biology, 2008, 18(24):1922-1926.
[36] Bavelier D, Levi D M, Li R W, et al. Removing brakes on adult brain plasticity:From molecular to behavioral interventions[J]. Journal of Neuroscience, 2010, 30(45):14964-14971.
[37] Huang C B, Lu Z L, Zhou Y. Mechanisms underlying perceptual learn-ing of contrast detection in adults with anisometropic amblyopia[J]. Journal of Vision, 2009, 9(11):24.
[38] Levi D M, Li R W. Perceptual learning as a potential treatment for am-blyopia:A mini-review[J]. Vision Research, 2009, 49(21):2535-2549.
[39] Kwon M, Nandy A S, Tjan B S. Rapid and persistent adaptability of human oculomotor control in response to simulated central vision loss[J]. Current Biology, 2013, 23(17):1663-1669.
[40] Polat U, Schor C, Tong J L, et al. Training the brain to overcome the effect of aging on the human eye[J]. Scientific Reports, 2012, 2:278.
[41] Xi J, Yan F, Zhou J, et al. Perceptual learning improves neural pro-cessing in myopic vision[J]. Investigative Ophthalmology & Visual Sci-ence, 2014, 55(13):784-784.
[42] Kozlowski L T, Cutting J E. Recognizing the sex of a walker from a dy-namic point-light display[J]. Attention, Perception, & Psychophysics, 1977, 21(6):575-580.
[43] Pollick F E, Kay J W, Heim K, et al. Gender recognition from pointlight walkers[J]. Journal of Experimental Psychology:Human Percep-tion and Performance, 2005, 31(6):1247-1265.
[44] Troje N F. The little difference:Fourier based synthesis of gender-spe-cific biological motion[J]. Dynamic Perception, 2002:115-120.
[45] Dittrich W H, Troscianko T, Lea S E G, et al. Perception of emotion from dynamic point-light displays represented in dance[J]. PerceptionLondon, 1996, 25(6):727-738.
[46] Montepare J M, Goldstein S B, Clausen A. The identification of emo-tions from gait information[J]. Journal of Nonverbal Behavior, 1987, 11(1):33-42.
[47] Cutting J E, Kozlowski L T. Recognizing friends by their walk:Gait perception without familiarity cues[J]. Bulletin of the Psychonomic So-ciety, 1977, 9(5):353-356.
[48] Loula F, Prasad S, Harber K, et al. Recognizing people from their movement[J]. Journal of Experimental Psychology:Human Perception and Performance, 2005, 31(1):210-220.
[49] Rhodes G, Brake S, Atkinson A P. What's lost in inverted faces?[J]. Cognition, 1993, 47(1):25-57.
[50] Valentine T. Upside-down faces:A review of the effect of inversion upon face recognition[J]. British Journal of Psychology, 1988, 79(4):471-491.
[51] Yin R K. Looking at upside-down faces[J]. Journal of Experimental Psychology, 1969, 81(1):141-145.
[52] Morton J, Johnson M H. Conspec and conlern:A two-process theory of infant face recognition[J]. Psychological Review, 1991, 98(2):164-181.
[53] de Haan M, Humphreys K, Johnson M H. Developing a brain special-ized for face perception:A converging methods approach[J]. Develop-mental Psychobiology, 2002, 40(3):200-212.
[54] Goren C C, Sarty M, Wu P Y K. Visual following and pattern discrimi-nation of face-like stimuli by newborn infants[J]. Pediatrics, 1975, 56(4):544-549.
[55] Maurer D. Infants' perception of facedness[M]. Field T M, Fox N A, Social Perception in Infants. Norwood:Ablex Publishing Corporation, 1985:73-100.
[56] Mondloch C J, Lewis T L, Budreau D R, et al. Face perception during early infancy[J]. Psychological Science, 1999, 10(5):419-422.
[57] Puce A, Allison T, Bentin S, et al. Temporal cortex activation in hu-mans viewing eye and mouth movements[J]. Journal of Neuroscience, 1998, 18(6):2188-2199.
[58] Haxby J V, Hoffman E A, Gobbini M I. The distributed neural sys-tems for face perception[J]. Trends in Cognitive Sciences, 2010, 4(6):223-233.
[59] Ikeda H, Blake R, Watanabe K. Eccentric perception of biological mo-tion is unscalably poor[J]. Vision research, 2005, 45(15):1935-1943.
[60] Pavlova M, Sokolov A. Orientation specificity in biological motion per-ception[J]. Perception & Psychophysics, 2000, 62(5):889-899.
[61] Sumi S. Upside-down presentation of the Johansson moving light-spot pattern[J]. Perception, 1984, 13(3):283-286.
[62] Freire A, Lee K, Symons L. The face-inversion effect as a deficit in the encoding of configural information:Direct evidence[J]. Perception, 2000, 29(2):159-170.
[63] Leder H, Bruce V. When inverted faces are recognized:The role of configural information in face recognition[J]. The Quarterly Journal of Experimental Psychology Section A, 2000, 53(2):513-536.
[64] Bertenthal B. Perception of biomechanical motions by infants:Intrin-sicimage and knowledge-based constraints[M]. Granrud C, VisualPer-ception and Cognition in Infancy. Hillsdale:Lawrence Erlbaum Assa-iates Inc, 1993:175-214.
[65] Bertenthal B, Proffitt D, Cutting J. Infant sensitivity to figural coher-ence in biomechanical motions[J]. Journal of Experimental Child Psy-chology, 1984, 37(2):213-230.
[66] Fox R, McDaniel C. The perception of biological motion by human in-fants[J]. Science, 1982, 218(4571):486-487.
[67] Simion F, Regolin L, Bulf H. A predisposition for biological motion in the newborn baby[J]. PNAS, 2008, 105(2):809-813.
[68] Valenza E, Simion F, Cassia V M, et al. Face preference at birth[J]. Journal of Experimental Psychology:Human Perception and Perfor-mance, 1996, 22(4):892-903.
[69] Cassia V M, Turati C, Simion F. Can a nonspecific bias toward topheavy patterns explain newborns' face preference?[J]. Psychological Science, 2004, 15(6):379-383.
[70] Thompson J C, Hardee J E. The first time ever I saw your face[J]. Trends in Cognitive Sciences, 2008, 12(8):283-284.
[71] Bonda E, Petrides M, Ostry D, et al. Specific involvement of human parietal systems and the amygdala in the perception of biological mo-tion[J]. Journal of Neuroscience, 1996, 16(11):3737-3744.
[72] Grossman E, Donnelly M, Price R, et al. Brain areas involved in per-ception of biological motion[J]. Journal of Cognitive Neuroscience, 2000, 12(5):711-720.
[73] Allison T, Puce A, McCarthy G. Social perception from visual cues:role of the STS region[J]. Trends in Cognitive Sciences, 2000, 4(7):267-278.
[74] Wang L, Jiang Y. Life motion signals lengthen perceived temporal du-ration[J]. Proceedings of the National Academy of Sciences, 2012, 109(11):E673-E677.
[75] Wang L, Yang X, Shi J, et al. The feet have it:Local biological mo-tion cues trigger reflexive attentional orienting in the brain[J]. Neuro-Image, 2014, (84):217-224.
[76] Wang L, Zhang K, He S, et al. Searching for life motion signals visual search asymmetry in local but not global biological-motion processing[J]. Psychological Science, 2010, 21(8):1083-1089.
[77] Zhao J, Wang L, Wang Y, et al. Developmental tuning of reflexive at-tentional effect to biological motion cues[J]. Scientific Reports, 2014, 4:55-58.
[78] Shi J, Weng X, He S, et al. Biological motion cues trigger reflexive at-tentional orienting[J]. Cognition, 2010, 117(3):348-354.
文章导航

/