[1] Gallis H A, Drew R H, Pickard W W. Amphotericin B:30 years of clin-ical experience[J]. Reviews of Infectious Diseases, 1990, 12(2):308-329.
[2] Aparicio J F, Mendes M V, Anton N, et al. Polyene macrolide antibiot-ic biosynthesis[J]. Current Medicinal Chemistry, 2004, 11(14):1643-1656.
[3] Jones J, Kosloff B R, Benveniste E N, et al. Amphotericin-B-mediated reactivation of latent HIV-1 infection[J]. Virology, 2005, 331(1):106-116.
[4] Chappuis F, Sundar S, Hailu A, et al. Visceral leishmaniasis:What are the needs for diagnosis, treatment and control[J]. Nature Reviews Micro-biology, 2007, 5(11):873-882.
[5] Sundar S, Rai M, Chakravarty J, et al. New treatment approach in Indi-an visceral leishmaniasis:Single-dose liposomal amphotericin B fol-lowed by short-course oral miltefosine[J]. Clinical Infectious Diseases, 2008, 47(8):1000-1006.
[6] Machadosilva A, Tavares C A, Sinisterra R D. New perspectives for leishmaniasis chemotherapy over current anti-leishmanial drugs:A pat-ent landscape[J]. Expert Opinion on Therapeutic Patents, 2015, 25(3):247-260.
[7] Golgher D, Vianna C H, Moura A C. Drugs against leishmaniasis:Over-view of market needs and pipeline[J]. Drug Development Research, 2011, 72(6):463-470.
[8] Luke R G, Boyle J A. Renal effects of amphotericin B lipid complex[J]. American Journal of Kidney Diseases, 1998, 31(31):780-785.
[9] Halperin A, Shadkchan Y, Pisarevsky E, et al. Novel water-soluble am-photericin B-PEG conjugates with low toxicity and potent in vivo effica-cy[J]. Journal of Medicinal Chemistry, 2016, 59(3):1197-1206.
[10] Sweeney P, Murphy C D, Caffrey P. Exploiting the genome sequence of Streptomyces nodosus for enhanced antibiotic production[J]. Applied Microbiology & Biotechnology, 2016, 100(3):1285-1295.
[11] Caffrey P, Lynch S, Flood E, et al. Amphotericin biosynthesis in Strep-tomyces nodosus:Deductions from analysis of polyketide synthase and late genes[J]. Chemistry & Biology, 2001, 8(7):713-723.
[12] Carmody M, byrne B, Murphy B, et al. Analysis and manipulation of amphotericin biosynthetic genes by means of modified phage KC515 transduction techniques[J]. Gene, 2004, 343(1):107-115.
[13] Mcnamara C M, Crawforth J M, Hickman B S, et al. Biosynthesis of amphotericin B[J]. Journal of the Chemical Society Perkin Transac-tions, 1998, 1(1):83-88.
[14] Byrne B, Carmody M, Gibson E, et al. Biosynthesis of deoxyamphoteri-cins and deoxyamphoteronolides by engineered strains of Streptomyces nodosus[J]. Chemistry & Biology, 2003, 10(12):1215-1224.
[15] Qiu J F, Zhuo Y, Zhu D Q, et al. Overexpression of the ABC transport-er AvtAB increases avermectin production in Streptomyces avermitilis[J]. Applied Microbiology & Biotechnology, 2011, 92(2):337-45.
[16] 刘静, 姜春艳, 张部昌, 等. ABC转运蛋白基因slnTI和slnTⅡ与盐霉素生物合成的相关性[J]. 微生物学通报, 2014, 41(1):58-66. Liu Jing, Jiang Chunyan, Zhang Buchang, et al. Involvement of ABC transporter genes slnTI and slnTⅡ in salinomycin biosynthesis[J]. Microbiology China, 2014, 41(1):58-66.
[17] Guerra S M, Rodríguezgarcía A, Santosaberturas J, et al. LAL Regula-tors SCO0877 and SCO7173 as pleiotropic modulators of phosphate starvation response and actinorhodin biosynthesis in Streptomyces coeli-color[J]. PLoS One, 2012, 7(2):e31475.
[18] Sekurova O N, Brautaset T, Sletta H, et al. In vivo analysis of the reg-ulatory genes in the nystatin biosynthetic gene cluster of Streptomyces noursei ATCC 11455 reveals their differential control over antibiotic biosynthesis[J]. Journal of Bacteriology, 2004, 186(5):1345-1354.
[19] Du Y L, Chen S F, Cheng L Y, et al. Identification of a novel Strepto-myces chattanoogensis L10 and enhancing its natamycin production by overexpressing positive regulator ScnRⅡ[J]. Journal of Microbiology, 2009, 47(4):506-513.
[20] Wu H L, Liu W C, Dong D, et al. SlnM gene overexpression with dif-ferent promoters on natamycin production in Streptomyces lydicus A02[J]. Journal of Industrial Microbiology & Biotechnology, 2014, 41(1):163-172.
[21] Chéron M, Cybulska B, Mazerski J, et al. Quantitative structure-activi-ty relationships in amphotericin B derivatives[J]. Biochemical Pharma-cology, 1988, 37(5):827-836.
[22] Nicolaou K C, Chakraborty T K, Daines R A, et al. Amphoteronolide B methyl ester. novel oxidative deglycosidation of amphotericin B[J]. Journal of the Chemical Society, Chemical Communications, 1987, 76(9):686-689.
[23] Szlinder-richert J, Mazerski J, Cybulska B, et al. MFAME, N-methylN-D-fructosyl amphotericin B methyl ester, a new amphotericin B de-rivative of low toxicity:relationship between self-association and ef-fects on red blood cells[J]. Biochimica et Biophysica Acta, 2001, 1528(1):15-24.
[24] Szlinder-richer J, Cybulska B, Grzybowska J, et al. Interaction of am-photericin B and its low toxic derivative, N-methyl-N-D-fructosyl amphotericin B methyl ester, with fungal, mammalian and bacterial cells measured by the energy transfer method[J]. Il Farmaco, 2004, 59(4):289-296.
[25] Power P, Dunne T, Murphy B, et al. Engineered synthesis of 7-oxoand 15-deoxy-15-oxo amphotericins:insights into structure-activity relationships in polyene antibiotics[J]. Chemistry & Biology, 2008, 15(1):78-86.
[26] Paquet V, Carreira E M. Significant improvement of antifungal activity of polyene macrolides by bisalkylation of the mycosamine[J]. Organic Letters, 2006, 8(9):1807-1809.
[27] Taylor A W, Costello B, Hunter P A, et al. Synthesis and antifungal selectivity of new derivatives of amphotericin B modified at the C-13 position[J]. The Journal of Antibiotics, 1992, 46(3):486-493.
[28] Tsuchikawa H, Matsushita N, Matsumori N, et al. Synthesis of 28-19F-amphotericin B methyl ester[J]. Tetrahedron Letters, 2006, 47(35):6187-6191.
[29] Matsumori N, Umegawa Y, Oishi T, et al. Bioactive fluorinated deriva-tive of amphotericin B[J]. Bioorganic & Medicinal Chemistry Letters, 2005, 15(15):3565-3567.
[30] Brautaset T, Sletta H, Nedal A, et al. Improved antifungal polyene macrolides via engineering of the nystatin biosynthetic genes in Strep-tomyces noursei[J]. Chemistry & Biology, 2008, 15(11):1198-1206.
[31] Zhou Y J, Li J L, Zhu J, et al. Incomplete -ketone processing as a mechanism for polyene structural variation in the FR-008/candicidin complex[J]. Chemistry & Biology, 2008, 15(6):629-638.
[32] Mendes M V, Recio E, Fouces R, et al. Engineered biosynthesis of novel polyenes:A pimaricin derivative produced by targeted gene dis-ruption in Streptomyces natalensis[J]. Chemistry & Biology, 2001, 8(7):635-644.
[33] Seco E M, Cuesta T, Fotso S, et al. Two polyene amides produced by genetically modified Streptomyces diastaticus var. 108[J]. Chemistry & Biology, 2005, 12(5):1093-1101.
[34] Nic-lochlainn L, Caffrey P. Phosphomannose isomerase and phospho-mannomutase gene disruptions in Streptomyces nodosus:Impact on am-photericin biosynthesis and implications for glycosylation engineering[J]. Metabolic Engineering, 2009, 11(1):40-7.
[35] Volokhan O, Sletta H, Ellingsen T E, et al. Characterisation of the P450 monooxygenase NysL, responsible for C-10 hydroxylation during biosynthesis of the polyene macrolide antibiotic nystatinin Streptomy-ces noursei[J]. Applied and Environmental Microbiology, 2006, 72(4):2514-2519.
[36] Mendes M V, Recio E, Fouces R, et al. Engineered biosynthesis of novel polyenes:a pimaricin derivative produced by targeted gene dis-ruption in Streptomyces natalensis[J]. Chemistry & Biology, 2001, 8(7):635-644.
[37] Carmody M, Murphy B, Byrne B, et al. Biosynthesis of amphotericin derivatives lacking exocyclic carboxyl groups[J]. Journal of Biological Chemistry, 2005, 280(41):34420-34426.
[38] Brautaset T, Sletta H, Nedal A, et al. Improved antifungal polyene macrolides via engineering of the nystatin biosynthetic genes in Strep-tomyces noursei[J]. Chemistry & Biology, 2008, 15(11):1198-1206.
[39] Zhen Q, Kang Q, Jiang C, et al. Engineered biosynthesis of pimaricin derivatives with improved antifungal activity and reduced cytotoxicity[J]. Applied Microbiology and Biotechnology, 2015, 99(16):6745-6752.
[40] Murphy B, Anderson K, Borissow C, et al. Isolation and charaicterisa-tion of amphotericin B analogues and truncated polyketide intermedi-ates produced by genetic engineering of Streptomyces nodosus[J]. Or-ganic & Biomolecular Chemistry, 2010, 8(16):3758-3770.
[41] Stephens N, Rawlings B, Caffrey P. Streptomyces nodosus host strain optimized for polyene glycosylation engineering[J]. Bioscience Biotech-nology and Biochemistry, 2012, 76(2):384-387.
[42] Hutchinson E, Murphy B, Dunne T, et al. Redesign of polyene macro-lide glycosylation:Engineered biosynthesis of 19-(O)-perosaminyl am-photeronolide B[J]. Chemistry & Biology, 2010, 17(2):174-182.
[43] Reid R, Piagentini M, Rodriguez E, et al. A model of structure and ca-talysis for ketoreductase domains in modular polyketide synthases[J]. Biochemistry, 2003, 42(1):72-79.
[44] De-poire E, Stephens N, Caffrey P. Engineered biosynthesis of disac-charide-modified polyene macrolides[J]. Applied and Environmental Microbiology, 2013, 79(19):6156-6159.
[45] Walmsley S, Depoire E, Rawlings B, et al. Engineered biosynthesis and characterization of disaccharide-modified 8-deoxyamphoterono-lides[J]. Applied and Environmental Microbiology, 2017, 101(5):1899-1905.
[46] Cybulska B, Gadomska I, Mazerski J, et al. N-methyl-N-D-fructosyl amphotericin B methyl ester (MF-AME), a novel antifungal agent of low toxicity:Monomer/micelle control over selective toxicity[J]. Acta Biochimica Polonica, 2000, 47(1):121-131.
[47] Cobb R E, Wang Y, Zhao H. High-efficiency multiplex genome edit-ing of streptomyces species using an engineered CRISPR/Cas system[J]. Acs Synthetic Biology, 2015, 4(6):723-728.
[48] Tong Y, Charusanti P, Zhang L, et al. CRISPR-Cas9 based engineer-ing of actinomycetal genomes[J]. Acs Synthetic Biology, 2015, 4(9):1020-1029.
[49] Wang W, Yang T, Li Y, et al. Development of a synthetic oxytetracy-cline-inducible expression system for streptomycetes using de novo characterized genetic parts[J]. Acs Synthetic Biology, 2016, 5(7):765-773.
[50] Wang W, Li X, Wang J, et al. An engineered strong promoter for strep-tomycetes[J]. Applied and Environmental Microbiology, 2013, 79(14):4484-4492.
[51] Antillón A, de Vries A H, Espinosa-Caballero M, et al. An amphoteri-cin B derivative equally potent to amphotericin B and with increased safety[J]. Plos One, 2016, 11(9):e0162171.
[52] Benhar I, Osherov N, Dergachev V, et al. Amphotericin B derivatives:US 20170043029A1[P]. 2017-01-16. http://www.freepatentsonline.com/20170043029.pdf.