专题论文

机载对海探测雷达发展趋势

  • 贺丰收 ,
  • 张涛 ,
  • 芦达
展开
  • 中国航空工业集团公司雷华电子技术研究所, 航空电子系统射频综合仿真航空科技重点实验室, 无锡 214063
贺丰收,高级工程师,研究方向为雷达总体设计、资源管理,电子信箱:hefengshou1979@163.com

收稿日期: 2017-09-25

  修回日期: 2017-10-10

  网络出版日期: 2017-10-31

基金资助

航空科学基金项目(2015ZC07003,2016ZC07004)

Progress of airborne maritime detection radar

  • HE Fengshou ,
  • ZHANG Tao ,
  • LU Da
Expand
  • AVIC Leihua Electronic Technology Institute, Aviation Key Laboratory of Science and Technology on AISSS, Wuxi 214063, China

Received date: 2017-09-25

  Revised date: 2017-10-10

  Online published: 2017-10-31

摘要

机载雷达体制经历了从单脉冲、脉冲多普勒,到相控阵的技术飞跃,机载雷达对海探测的综合功能和性能也伴随着每一代海军航空兵装备的更新不断取得突破。本文在综合分析机载雷达内在演进规律和雷达形态发展变化的基础上,梳理了机载雷达对海探测的技术发展趋势,总结了机载对海探测雷达未来主要能力特征、系统架构和发展方向,结合近年来微波光子学、人工智能、超材料、量子雷达等新兴前沿学科的发展成果,展望了未来机载对海探测雷达的发展趋势。

本文引用格式

贺丰收 , 张涛 , 芦达 . 机载对海探测雷达发展趋势[J]. 科技导报, 2017 , 35(20) : 28 -35 . DOI: 10.3981/j.issn.1000-7857.2017.20.003

Abstract

The airborne radar sees a technology leap forward from single pulse, pulse Doppler to phased array. The advancement of each generation of the naval aviation facilitiy involves breakthroughs of functions and performances of the maritime detection radar. Based on the analysis of the airborne radar and the development of the radar form, the technological development of the airborne maritime detection radar is reviewed, including the main characteristics, the system architecture, and the development direction. The cutting-edge scientific achievements in recent years, with respect to the airborne maritime detection radar promote the technology of the naval aviation equipment.

参考文献

[1] 于明飞, 陈孝君. 机载雷达发展历程及未来趋势[J]. 航天制造技术, 2007, 30(6):49-56. Yu MingFei, Chen Xiaojun. Course and prospect for airborne radar[J]. Spaceflight Manufacture, 2007, 30(6):49-56.
[2] 中航工业雷达与电子设备研究院. 机载雷达手册[M]. 北京:国防工业出版社, 2012. AVIC Radar and Avionic Institute. Airborne radar handbook[M]. Bei-jing:National Defense Industry Press, 2012.
[3] E-2C Hawkeye 2000[EB/OL]. (2013-02-24)[2017-09-26]. http://www.northropgrumman.com/Capabilities/E-2CHawkeye2000/Pages/default.aspx.
[4] AN/APY-10 maritime, littoral and overland surveillance radar[EB/OL]. (2012-02-19)[2017-09-26]. http://www.raytheon.com/capabilities/prod-ucts/apy10/.
[5] E-2C/D hawkeye airborne early warning aircraft[EB/OL]. (2011-09-17)[2017-09-26]. http://www.naval-technology.com/projects/e2-hawkeye/.
[6] US Navy successfully testing APS-154 on P-8A Poseidon aircraft[EB/OL]. (2016-01-09)[2017-09-26]. http://www.naval-technology.com/news/newus-navy-successfully-testing-aps-154-on-p-8a-poseidon-4769035.
[7] 杨建宇. 雷达技术发展规律和宏观趋势分析[J]. 雷达学报, 2012, 1(1):19-27. Yang Jianyu. Radar technology disciplinarian and development[J]. Jour-nal of Radars, 2012, 1(1):19-27.
[8] 陈小龙, 关键, 黄勇, 等. 雷达低可观测目标探测技术[J]. 科技导报, 2017, 35(11):20-38. Chen Xiaolong, Guan Jian, Huang Yong, et al. Radar low-observable target detection[J]. Science & Technology Review, 2017, 35(11):20-38.
[9] 陈小龙, 关键, 何友, 等. 高分辨稀疏表示及其在雷达动目标检测中的应用[J]. 雷达学报, 2017, 6(3):239-251. Chen Xiaolong, Guan Jian, He You, et al. High-resolution sparse repre-sentation and its applications in radar moving target detection[J]. Jour-nal of Radars, 2017, 6(3):239-251.
[10] 陈小龙, 关键, 何友. 微多普勒理论在海面目标检测中的应用及展望[J]. 雷达学报, 2013, 2(1):123-251. Chen Xiaolong, Guan Jian, He You. Applications and prospect of mi-cro-motion theory in the detection of sea surface target[J]. Journal of Radars, 2013, 2(1):123-251.
[11] Chen X L, Guan J, Bao Z. Detection and extraction of target with mi-cro-motion in spiky sea clutter via short-time fractional Fourier trans-form[J]. IEEE Transaction on Geoscience and Remote Sensing, 2014, 52(2):1002-1018.
[12] 刘波, 沈齐. 空基预警探测系统[M]. 北京:国防工业出版社, 2012. Liu Bo, Shen Qi. Airborne early warning system[M]. Beijing:National Defense Industry Press, 2012.
[13] 克莱顿·克里斯坦森. 创新者的窘境[M]. 北京:中信出版社, 2014. Clayton M C. The innovator's dilemma[M]. Beijing:China CITIC Press, 2014.
[14] 郭先松, 孔令兵, 刘小飞. 机载预警雷达天线发展趋势及关键技术[J]. 现代雷达, 2015, 37(12):19-24. Guo Xiansong, Kong Lingbin, Liu Xiaofei. Development trend and key technology of airborne early-warning radar antenna[J]. Modern Radar, 2015, 37(12):19-24.
[15] 沈雪石, 张爱军, 赵海洋. 颠覆性技术对武器装备发展的影响及思考[J]. 国防科技, 2015, 36(3):18-22. Shen Xueshi, Zhang Aijun, Zhao Haiyang. The impact and thinking of disruptive technologies on armament development[J]. National Defense Science & Technology, 2015, 36(3):18-22.
[16] 李海鸥, 李思敏, 陈明. 微波光子技术的研究进展[J]. 光通信技术, 2011(8):24-28. Li Haiou, Li Simin, Chen Ming. Research progresses on microwave photonics technologies[J]. Optical Communication Technology, 2011(8):24-28.
[17] 俞祝良. 人工智能技术发展概述[J]. 南京信息工程大学学报(自然科学版), 2017, 9(3):297-304. Yu Zhuliang. Review of progress on artificial intelligence[J]. Journal of Nanjing University of Information Science & Technology(Natural Science Edition), 2017, 9(3):297-304.
[18] Simon H. Cognitive radar:A way of the future[J]. IEEE Signal Process-ing Magazine, 2006, 23(1):30-40.
[19] 于相龙, 周济. 智能超材料研究与进展[J]. 材料工程, 2016, 44(7):119-128. Yu Xianglong, Zhou Ji. Research advance in smart metamaterials[J]. Journal of Materials Engineering, 2016, 44(7):119-128.
[20] 黄志洵, 姜荣. 从传统雷达到量子雷达[J]. 前沿科学, 2017, 41(11):4-21. Huang Zhixun, Jiang Rong. From the classical radar to the quantum radar[J]. Frontier Science, 2017, 41(11):4-21.
文章导航

/