专题论文

基于单极化SAR图像的舰船目标检测与分类方法

  • 王兆成 ,
  • 李璐 ,
  • 杜兰 ,
  • 徐丰
展开
  • 1. 西安电子科技大学雷达信号处理国家重点实验室, 西安 710071;
    2. 复旦大学电磁波信息科学教育部重点实验室, 上海 200433
王兆成,博士研究生,研究方向为SAR图像目标检测与鉴别,电子信箱:zcwang199009@163.com

收稿日期: 2017-09-25

  修回日期: 2017-09-27

  网络出版日期: 2017-10-31

基金资助

国家自然科学基金项目(61771362)

Ship detection and classification baser on single-polarization SAR images

  • WANG Zhaocheng ,
  • LI Lu ,
  • DU Lan ,
  • XU Feng
Expand
  • 1. National Lab of Radar Signal Processing, Xidian University, Xi'an 710071, China;
    2. Key Lab for Information Science of Electromagnetic Waves, Fudan University, Shanghai 200433, China

Received date: 2017-09-25

  Revised date: 2017-09-27

  Online published: 2017-10-31

摘要

SAR是一种主动式微波成像传感器,具有全天时全天候高分辨率对地观测能力,被广泛应用于海洋舰船目标检测与分类。随着SAR成像技术的发展,SAR图像的分辨率越来越高,数据量也越来越大,研究鲁棒高效的海洋舰船目标检测与分类方法对于军事及民用领域具有重大意义。总结了现有的针对单极化SAR图像的舰船目标检测及分类方法,分析了各类方法的特点以及存在的问题,展望了未来SAR图像舰船目标检测及分类方法的发展趋势。

本文引用格式

王兆成 , 李璐 , 杜兰 , 徐丰 . 基于单极化SAR图像的舰船目标检测与分类方法[J]. 科技导报, 2017 , 35(20) : 86 -93 . DOI: 10.3981/j.issn.1000-7857.2017.20.009

Abstract

The SAR is an active microwave imaging sensor, which can work day and night, under all weather conditions, and with a highresolution earth observation capability. It is widely used for ship detection and classification. With the development of the SAR imaging technology, the resolution of the SAR image is becoming higher and higher, thus the robust and efficient ship detection and classification methods are very important for military and civil applications. This paper reviews the current ship detection and classification based on single-polarization SAR images, analyzes their features and shortcomings, and make aprediction of the future developments.

参考文献

[1] Arnesen T N, Olsen R B. Literature review on vessel detection[M]. Nor-way:Norwegian Defence Research Establishment, 2004:1-168.
[2] Vachon P W. Ship detection in synthetic aperture radar imagery[C/OL].[2017-08-31]. http://www.ibrarian.net/navon/paper/Ship_Detetion_in_Synthetic_Aperture_Radar_Imagery.pdf?paperid=17818790.
[3] Greidanus H, Kourti N. Findings of the DECLIMS project-detection and classification of marine traffic from space[J]. Proceedings of Seasar, 2006, ESA-SP613:1-9.
[4] Crisp D J. The state-of-the-art in ship detection in synthetic aperture radar imagery[J]. Organic Letters, 2004, 35(42):2165-2168.
[5] 郭颖. 基于马尔科夫随机场的SAR图像处理[D]. 西安:西安电子科技大学电子工程学院, 2014. Guo Ying. SAR image processing based on markov random fields[D]. Xi'an:School of Electronic Engineering, Xidian University, 2014.
[6] Lesage F, Gagnon L. Experimenting level set-based snakes for contour segmentation in radar imagery[J]. Proceedings of SPIE The Internation-al Society for Optical Engineering, 2000, 4041:154-162.
[7] Liu Y, Zhang M H, Xu P, et al. SAR ship detection using sea-land seg-mentation-based convolutional neural network[C]//International Work-shop on Remote Sensing with Intelligent Processing. Piscataway, NJ:IEEE, 2017 doi:10.1109/RSIP.2017.7958806.
[8] Chen S, Wang H, Xu F, et al. Target classification using the deep con-volutional networks for SAR images[J]. IEEE Transactions on Geosci-ence & Remote Sensing, 2016, 54(8):4806-4817.
[9] 种劲松, 朱敏慧. SAR图像舰船及其尾迹检测研究综述[J]. 电子学报, 2003, 31(9):1356-1360. Chong Jinsong, Zhu Minhui. Survey of the study on ship and wake de-tection in SAR imagery[J]. Acta Ectronica Sinica, 2003, 31(9):1356-1360.
[10] 雷盼飞, 苏清贺, 杨桄. SAR图像舰船目标检测研究[J]. 影像技术, 2011, 23(4):40-45. Lei Panfei, Su Qinghe, Yang Guang. Research on detection of ship tar-get from SAR images[J]. Image Technology, 2011, 23(4):40-45.
[11] Novak L M, Owirka G J, Netishen C M. Performance of a high-resolu-tion polarimetric SAR automatic target recognition system[J]. Lincoln Laboratory Journal, 1993, 6(1):11-24.
[12] Qin X, Zhou S, Zou H, et al. A CFAR detection algorithm for general-ized Gamma distributed background in high-resolution SAR images[J]. IEEE Geoscience & Remote Sensing Letters, 2013, 10(4):806-810.
[13] 周伟, 关键, 唐小明, 等. SAR图像舰船检测综述[C]//中国合成孔径雷达会议. 北京:中国电子学会, 2005:482-488. Zhou Wei, Guan Jian, Tang Xiaoming, et al. Review of ship detection in SAR imagery[C]//China Conference on Synthetic Aperture Radar. Beijing:Chinese Institute of Electronics, 2005:482-488.
[14] Goldstein G B. False-alarm regulation in log-normal and weibull clut-ter[J]. IEEE Transactions on Aerospace & Electronic Systems, 1973, AES-9(1):84-92.
[15] Martíndenicolás J, Jaraboamores M, Matamoya D, et al. Statistical analysis of SAR sea clutter for classification purposes[J]. Remote Sens-ing, 2014, 6(10):9379-9411.
[16] Gao G, Liu L, Zhao L, et al. An adaptive and fast CFAR algorithm based on automatic censoring for target detection in high-resolution SAR images[J]. IEEE Transactions on Geoscience & Remote Sensing, 2009, 47(6):1685-1697.
[17] 鲁统臻, 张杰, 纪永刚, 等. 基于G0分布的高海况SAR船只目标检测方法[J]. 海洋科学进展, 2011, 29(2):186-195. Lu Tongzhen, Zhang Jie, Ji Yonggang, et al. Ship target detection algo-rithm based on G0 distribution for SAR images under rough sea condi-tions[J]. Advances in Marine Science, 2011, 29(2):186-195.
[18] 曹峰, 邢相薇, 计科峰. 一种SAR图像舰船目标快速检测方法[J]. 雷达科学与技术, 2012, 10(4):380-386. Cao Feng, Xing Xiangwei, Ji Kefeng. A fast method for ship detection in SAR imagery[J]. Radar Science and Technology, 2012, 10(4):380-386.
[19] Liao M, Wang C, Wang Y, et al. Using SAR images to detect ships from sea clutter[J]. IEEE Geoscience & Remote Sensing Letters, 2008, 5(2):194-198.
[20] 曲长文, 邓淇元, 江源. SAR图像舰船目标双阈值快速CFAR检测算法[J]. 舰船科学技术, 2015, 37(11):136-140. Qu Changwen, Deng Qiyuan, Jiang Yuan. A double threshold fast CFAR ship detection algorithm in SAR images[J]. Ship Science and Technology, 2015, 37(11):136-140.
[21] 艾加秋, 齐向阳. 一种基于局部K-分布的新的SAR图像舰船检测算法[J]. 中国科学院大学学报, 2010, 27(1):36-42. Ai Jiaqiu, Qi Xiangyang. A new ship detection algorithm based on lo-cal K-distribution in SAR images[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2010, 27(1):36-42.
[22] Li H C, Hong W, Wu Y R, et al. On the empirical-statistical model-ing of SAR images with generalized gamma distribution[J]. IEEE Jour-nal of Selected Topics in Signal Processing, 2011, 5(3):386-397.
[23] Gao G. A parzen-window-kernel-based CFAR algorithm for ship de-tection in SAR images[J]. IEEE Geoscience & Remote Sensing Let-ters, 2011, 8(3):557-561.
[24] 张颢, 孟祥伟, 刘磊, 等. 改进的基于Parzen窗算法的SAR图像目标检测[J]. 计算机科学, 2015, 42(l1A):151-154. Zhang Hao, Meng Xiangwei, Liu Lei, et al. Improved parzen window based ship detection algorithm in SAR images[J]. Computer Science, 2015, 42(l1A):151-154.
[25] Li J, Zelnio E G. Target detection with synthetic aperture radar[J]. IEEE Transactions on Aerospace & Electronic Systems, 2002, 32(2):613-627.
[26] Tello M, Lopez-Martinez C, Mallorqui J J. A novel algorithm for ship detection in SAR imagery based on the wavelet transform[J]. IEEE Geoscience & Remote Sensing Letters, 2005, 2(2):201-205.
[27] 张风丽, 吴炳方, 张磊. 基于小波分析的SAR图像船舶目标检测[J]. 计算机工程, 2007, 33(6):33-34. Zhang Fengli, Wu Bingfang, Zhang Lei. Ship detection in SAR images based on wavelet analysis[J]. Computer Engineering, 2007, 33(6):33-34.
[28] 高贵, 周蝶飞, 蒋咏梅, 等. SAR图像目标检测研究综述[J]. 信号处理, 2008, 24(6):971-981. Gao Gui, Zhou Diefei, Jiang Yongmei, et al. Study on target detection in SAR image:A survey[J]. Signal Processing, 2008, 24(6):971-981.
[29] Souyris J C, Henry C, Adragna F. On the use of complex SAR image spectral analysis for target detection:Assessment of polarimetry[J]. IEEE Transactions on Geoscience & Remote Sensing, 2003, 41(12):2725-2734.
[30] Ouchi K, Tamaki S, Yaguchi H, et al. Ship detection based on coher-ence images derived from cross correlation of multilook SAR images[J]. IEEE Geoscience & Remote Sensing Letters, 2004, 1(3):184-187.
[31] Wang Y, Liu H. A hierarchical ship detection scheme for high-resolu-tion SAR images[J]. IEEE Transactions on Geoscience & Remote Sens-ing, 2012, 50(10):4173-4184.
[32] Yu Y, Ding Z, Wang B, et al. Visual attention-based ship detection in SAR images[M]. Berlin:Advances in Neural Network Research and Applications, 2010:283-292.
[33] Borghys D, Perneel C, Bouaraba A. Activity monitoring in a commer-cial harbor using multitemporal repeat-pass interferometric SAR data[C]//Geoscience and Remote Sensing Symposium. Piscataway, NJ:IEEE, 2012:7440-7443.
[34] Leng X, Ji K, Yang K, et al. A bilateral CFAR algorithm for ship de-tection in SAR images[J]. IEEE Geoscience & Remote Sensing Let-ters, 2015, 12(7):1536-1540.
[35] Dai H, Du L, Wang Y, et al. A modified CFAR algorithm based on ob-ject proposals for ship target detection in SAR images[J]. IEEE Geosci-ence & Remote Sensing Letters, 2016, PP(99):1-5.
[36] Kang M, Leng X, Lin Z, et al. A modified faster R-CNN based on CFAR algorithm for SAR ship detection[C]//International Workshop on Remote Sensing with Intelligent Processing. Piscataway, NJ:IEEE, 2017:1-4.
[37] 陈琪, 陆军, 王娜, 等. 一种基于SAR图像鉴别的港口区域舰船目标新方法[J]. 宇航学报, 2011, 32(12):2582-2588. Chen Qi, Lu Jun, Wang Na, et al. An SAR images-based new method for ship discrimination in harbor region[J]. Journal of Astronautics, 2011, 32(12):2582-2588.
[38] 刘磊. 基于Gabor变换和KPCA的SAR图像舰船目标鉴别[J]. 舰船电子工程, 2016, 36(11):34-36. Liu Lei. Ship targets discrimination in SAR images based on Gabor and KPCA[J]. Ship Electronic Engineering, 2016, 36(11):34-36.
[39] Wei A, Feng X, Li Y C, et al. Detection and discrimination of ship tar-gets in complex background from spaceborne ALOS2 SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing, 2017, in press.
[40] Osman H, Pan L, Gagnon L, et al. Classification of ships in airborne SAR imagery using backpropagation neural networks[C]//SPIE-Radar Processing Technology Applications Ⅱ. San Diego:SPIE, 1997:126-136.
[41] Margarit G, Tabasco A. Ship classification in single-pol SAR images based on fuzzy logic[J]. IEEE Transactions on Geoscience & Remote Sensing, 2011, 49(8):3129-3138.
[42] Xing X, Ji K, Zou H, et al. Ship classification in TerraSAR-X images with feature space based sparse representation[J]. IEEE Geoscience & Remote Sensing Letters, 2013, 10(6):1562-1566.
[43] 王超. 高分辨率SAR图像船舶目标检测与分类[M]. 北京:科学出版社, 2013:1-178. Wang Chao. Detection and classification of ship targets in high-resolu-tion SAR images[M]. Beijing:Science Press, 2013:1-178.
[44] Wang C, Zhang H, Wu F, et al. A novel hierarchical ship classifier for COSMO-SkyMed SAR data[J]. IEEE Geoscience & Remote Sens-ing Letters, 2013, 11(2):484-488.
[45] Jiang M, Yang X, Dong Z, et al. Ship classification based on super-structure scattering features in SAR images[J]. IEEE Geoscience & Remote Sensing Letters, 2016, 13(5):616-620.
[46] Lang H, Zhang J, Zhang X, et al. Ship classification in SAR image by joint feature and classifier selection[J]. IEEE Geoscience & Remote Sensing Letters, 2016, 13(2):212-216.
[47] Zhu J W, Qiu X L, Pan Z X, et al. An improved shape contexts based ship classification in SAR images[J]. Remote Sensing, 2017, 9(2):145.
[48] Schwegmann C P, Kleynhans W, Salmon B P, et al. Very deep learn-ing for ship discrimination in synthetic aperture radar imagery[C]//Geo-science and Remote Sensing Symposium. Piscataway, NJ:IEEE, 2016:104-107.
[49] Bentes C, Frost A, Velotto D, et al. Ship-iceberg discrimination with convolutional neural networks in high resolution SAR images[C/OL].[2017-08-31]. http://elib.dlr.de/99079/2/2016_BENTES_Frost_Velotto_Tings_EUSAR_FP.pdf.
[50] Ødegaard N, Knapskog A O, Cochin C, et al. Classification of ships using real and simulated data in a convolutional neural network[C]//Radar Conference. Piscataway, NJ:IEEE, 2016, doi:10.1109/RA-DAR.2016.7485270.
[51] 陈小龙, 关键, 黄勇, 等. 雷达低可观测目标探测技术[J]. 科技导报, 2017, 35(11):30-38. Chen Xiaolong, Guan Jian, Huang Yong, et al. Radar low-observable target detection[J]. Science & Technology Review, 2017, 35(11):30-38.
[52] 邓云凯, 赵凤军, 王宇. 星载SAR技术的发展趋势及应用浅析[J]. 雷达学报, 2012, 1(1):1-10. Deng Yunkai, Zhao Fengjun, Wang Yu. Brief analysis on the develop-ment and application of spaceborne SAR[J]. Journal of Radars, 2012, 1(1):1-10.
文章导航

/