专题论文

用于海洋监测的宽带数字相控阵关键技术

  • 杨李杰 ,
  • 宋春毅 ,
  • 徐志伟
展开
  • 浙江大学海洋电子工程研究所, 杭州 310027
杨李杰,博士研究生,研究方向为相控阵校正技术,电子信箱:yanglijie@zju.edu.cn

收稿日期: 2017-09-26

  修回日期: 2017-10-10

  网络出版日期: 2017-10-31

基金资助

国家自然科学基金项目(61674128,61731019);中央高校基本科研业务费专项(2017XZZX001-02A);浙江省重点创新团队项目(2013TD14)

Key technologies of wideband digital phased array for ocean surveillance

  • YANG Lijie ,
  • SONG Chunyi ,
  • XU Zhiwei
Expand
  • The Institute of Marine Electronic Engineering, Zhejiang University, Hangzhou 310027, China

Received date: 2017-09-26

  Revised date: 2017-10-10

  Online published: 2017-10-31

摘要

宽带数字相控阵雷达能够实现宽海域、多目标、高精度的海域监测功能,而其最关键的部件是数字射频收发芯片。介绍了数字射频收发芯片的技术概况,结合数字射频收发芯片的发展现状,讨论了涉及的关键技术。分析表明,以数字射频收发芯片为核心的宽带数字相控阵将成为下一代海洋监测的优选方案。

本文引用格式

杨李杰 , 宋春毅 , 徐志伟 . 用于海洋监测的宽带数字相控阵关键技术[J]. 科技导报, 2017 , 35(20) : 119 -125 . DOI: 10.3981/j.issn.1000-7857.2017.20.013

Abstract

Wideband digital phased array radar is a promising technology to monitor ocean environment. It can realize wide sea area, multi targets and high precision sea area monitoring. The key component of wideband digital phased array radar is digital RF transceiver chips. This paper briefly introduces the development and technology of integrated digital RF transceiver chips. In this paper, we discuss and analyze several key technical problems. The analysis results suggest that broadband digital phased array radar could be the best candidate for the next generation ocean surveillance.

参考文献

[1] 吴雄斌, 张兰, 柳剑飞. 海洋雷达探测技术综述[J]. 海洋技术学报, 2015, 34(3):8-16. Wu Xiongbin, Zhang Lan, Liu Jianfei. Overview of detecting techniques using oceanographic radars[J]. Journal of Ocean Technology, 2015, 34(3):8-16.
[2] Fenn A J, Temme D H, Delaney W P, et al. The development of phased-array radar technology[J]. Lincoln Laboratory Journal, 2000, 12(2):321-340
[3] 林幼权. 星载海洋监视雷达系统[J]. 现代雷达, 2012, 34(11):6-10. Lin Youquan. Spaceborne radar systems for ocean surveillance[J]. Mod-ern Radar, 2012, 34(11):6-10.
[4] 梁广, 龚文斌, 刘会杰, 等. 新型星载多波束相控阵天线分布式数字波束成形网络设计与实现[J]. 航空学报, 2010, 31(7):1417-1425. Liang Guang, Gong Wenbin, Liu Huijie, et al. Design and implementa-tion of distributed digital beam forming network for new-style satelliteborne phased array antenna[J]. Acta Aeronautica Et Astronautica Sini-ca, 2010, 31(7):1417-1425.
[5] Okada K, Housai S. Digitally-assisted analog and RF CMOS circuit de-sign for software-defined radio[M]. Berlin:Springer, 2011.
[6] Kay S M, Marple S L J. Spectrum analysi:A modern perspective[J]. Pro-ceedings of the IEEE, 1981, 69(11):1380-1419.
[7] Krim B H, Viberg M. Two decades of array signal processing research[R].[2017-08-31]. http://users.isy.liu.se/en/rt/fredrik/spcourse/slides7.pdf.
[8] Veen B D V, Buckley K M. Beamforming:A versatile approach to spa-tial filtering[J]. IEEE Assp Magazine, 2002, 5(2):4-24.
[9] Knight W C, Pridham R G, Kay S M. Digital signal processing for sonar[J]. Proceedings of the IEEE, 1981, 69(11):1451-1506.
[10] Monzingo, RobertA. Introduction to adaptive arrays[M]. NewYork:Sci-Tech Publishing, 1980.
[11] Gabriel W F. Spectral analysis and adaptive array superresolution tech-niques[J]. Proceedings of the IEEE, 1980, 68(6):654-666.
[12] Barton P. Digital beam forming for radar[J]. Communications Radar & Signal Processing Iee Proceedings F, 1980, 127(4):266-277.
[13] Hammerschmidt C. Google gesture sensor uses 60 GHz radar[EB/OL]. (2015-06-01)[2017-08-31]. http://www.analog-eetimes.com/en/google-gesture-sensor-uses-60-ghz-radar.html?cmp_id=7&news_id=222229073.
[14] Sherrie Gutierrez. SiBEAM introduces new 60 GHz wirelessHD mod-ules to accelerate wireless display designs for medical and industrial applications[EB/OL]. (2015-10-06)[2017-08-31]. http://www.business-wire.com/news/home/20151006005106/en/SiBEAM-Introduces-New-60GHz-WirelessHD-Modules-Accelerate.
[15] Maxey C, Raman S, Groves K, et al. Mixed-signal SoCs with in situ self-healing circuitry[J]. IEEE Design & Test of Computers, 2013, 29(6):27-39.
[16] Green D S, Dohrman C L, Demmin J, et al. Path to 3D heterogeneous integration[C]//3D Systems Integration Conference. Piscaatway, NJ:IEEE, 2015:FS7.1-FS7.3.
[17] 核心电子器件、高端通用芯片及基础软件产品专项[EB/OL].[2017-08-31]. http://www.nmp.gov.cn/zxjs/200901/t20090113_2120.htm. Core electronic devices, high-end general-purpose chips and basic software products[EB/OL].[2017-08-31]. http://www.nmp.gov.cn/zxjs/200901/t20090113_2120.htm.
[18] 新一代宽带无线移动通信网专项[EB/OL].[2017-08-31]. http://www.nmp.gov.cn/zxjs/200901/t20090113_2118.htm. Special project of new generation broadband wireless mobile communi-cation network[EB/OL].[2017-08-31]. http://www.nmp.gov.cn/zxjs/200901/t20090113_2118.htm.
[19] 张卫清, 许厚棣, 唐亮. 雷达数字化收发系统芯片设计与实现[J]. 雷达科学与技术, 2016, 14(3):317-323. Zhang Weiqing, Xu Houdi, Tang Liang. Design and implementation of radar digitized receive-transmit system chip[J]. Radar Science and Technology, 2016, 14(3):317-323.
[20] 郭维, 黄文刚, 马敏舒, 等. 功能可配置的数字变频芯片的研制与测试[J]. 现代雷达, 2017, 39(7):45-48. Guo Wei, Huang Wengang, Ma Minshu, et al. Development and test of digital frequency conversion chip with configurable function[J]. Mod-ern Radar, 2017, 39(7):45-48.
[21] 李明, 吴洪江, 魏洪涛, 等. 基于GaAs PHEMT的5~12GHz收发一体多功能芯片[J]. 半导体技术, 2015, 40(1):8-11. Li Ming, Wu Hongjiang, Wei Hongtao, et al. 5-12 GHz multi-func-tion transmit/receive chip based on GaAs PHEMTs[J]. Semiconductor Technology, 2015, 40(1):8-11.
[22] Campbell M, Hogan J, Hogan J, et al. When IC yield missed the tar-get, who is at fault?[C]//Proceedings of 41st Design Automation Confer-ence. Design Automation Conference, 2004. Proceedings. Piscaatway, NJ:IEEE, 2004, doi:10.1109/DAC.2004.10000.
[23] Barabino N, Silveira F. Digitally assisted CMOS RF detectors with self-calibration for variability compensation[J]. IEEE Transactions on Microwave Theory & Techniques, 2015, 63(5):1676-1682.
[24] Ali M H M, Ler C L, Rustagi S C, et al. The impact of electromagnet-ic coupling of guard ring metal lines on the performance of on-chip spiral inductor in silicon CMOS[C]//Quality Electronic Design. Piscaat-way, NJ:IEEE, 2010:285-288.
[25] Holt W M. Moore's law:A path going forward[C]//2016 IEEE Interna-tional Solid-State Circuits Conference. Piscaatway, NJ:IEEE, 2016:8-13.
[26] Wu J, Chou A, Li T, et al. 27.6 A 4 GS/s 13b pipelined ADC with ca-pacitor and amplifier sharing in 16 nm CMOS[C]//2016 IEEE Interna-tional Solid-State Circuits Conference. Piscaatway, NJ:IEEE, 2016:466-467.
[27] Liu Y C, Tang A, Wang N Y, et al. A V-band self-healing power am-plifier with adaptive feedback bias control in 65 nm CMOS[C]//Radio Frequency Integrated Circuits Symposium. Piscaatway, NJ:IEEE, 2011:1-4.
[28] Lajnef S, Boulejfen N, Abdelhafiz A, et al. Two-dimensional cartesian memory polynomial model for nonlinearity and I/Q imperfection com-pensation in concurrent dual-band transmitters[J]. IEEE Transactions on Circuits & Systems Ⅱ Express Briefs, 2015, 63(1):14-18.
[29] Xu Z, Gu Q, Wu Y C, et al. A 70~78 GHz integrated CMOS frequen-cy synthesizer for W-band satellite communications[J]. IEEE Transac-tions on Microwave Theory and Techniques, 2011, 59(12):3206-3218.
[30] Tse S, Wang X J, Hao Y, et al. An EBG enhancement to patch array antenna with integrated optical transducer[C]//International Confer-ence on Applied Electromagnetics and Communications. Piscaatway, NJ:IEEE, 2008, doi:10.1109/ICECOM.2007.4544414.
[31] Sarabandi K, Song Y J. Subwavelength radio repeater system utilizing miniaturized antennas and metamaterial channel isolator[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(7):2683-2690.
[32] Wallace H B. Advanced millimeter-wave multifunction systems and the implications for semiconductor technology[C]//2011 IEEE Com-pound Semiconductor Integrated Circuit Symposium (CSICS). Piscat-away, NJ:IEEE, 2011, doi:10.1109/CSICS.2011.6062452.
[33] Multimission phased-array radar (MPAR)[EB/OL].[2017-09-30]. https://ll.mit.edu/mission/aviation/faawxsystems/mpar.html.
[34] Intel announces new 22 nm 3D tri-gate transistors[EB/OL].[2017-08-31]. https://www.intel.com/content/www/us/en/silicon-innovations/stan-dards-22nm-3d-tri-gate-transistors-presentation.html
[35] 陈浩文, 黎湘, 庄钊文. 一种新兴的雷达体制——MIMO雷达[J]. 电子学报, 2012, 40(6):1190-1198. Chen Haowen, Li Xiang, Zhuang Zhaowen. A rising radar system:MI-MO radar[J]. Acta Electronica Sinica, 2012, 40(6):1190-1198.
[36] 赵光辉. 基于SIAR体制的稀布阵米波雷达若干问题研究[D]. 西安:西安电子科技大学, 2008. Zhao Guanghui. Study on some problems of dilute Meterwave radar system based on SIAR array[D]. Xi'an:Xidian University, 2008.
[37] 陈小龙, 关键, 黄勇, 等. 雷达低可观测目标探测技术[J]. 科技导报, 2017, 35(11):30-38. Chen Xiaolong, Guan Jian, Huang Yong, et al. Radar low-observable target detection[J]. Science & Technology Review, 2017, 35(11):30-38.
[38] 陈小龙, 关键, 何友, 等. 高分辨稀疏表示及其在雷达动目标检测中的应用[J]. 雷达学报, 2017, 6(3):239-251. Chen Xiaolong, Guan Jian, He You, et al. High-resolution sparse rep-resentation and its applications in radar moving target detection[J]. Journal of Radars, 2017, 6(3):239-251.
文章导航

/