[1] Wen Y Z, Yue Y Y, Tian S S, et al. Isolation and identification of domi-nant microorganisms involved in naturally fermented goat milk in Haixi region of Qinghai, China[J]. Annals of Microbiology, 2008, 58(2):213-217.
[2] Zhuang G, Wang J, Yan L, et al. In vitro comparison of probiotic prop-erties of Lactobacillus casei Zhang, a potential new probiotic, with se-lected probiotic strains[J]. LWT-Food Science and Technology, 2009, 42(10):1640-1646.
[3] Liu W J, Sun Z H, Zhang J C, et al. Analysis of microbial composition in acid whey for dairy fan making in yunnan by conventional method and 16S rRNA sequencing[J]. Current Microbiology, 2009, 59(2):199-205.
[4] Bao Q, Yu J, Liu W, et al. Predominant lactic acid bacteria in tradition-al fermented yak milk products in the Sichuan Province of China[J]. Dairy Science & Technology, 2012, 92(3):309-319.
[5] Sun Z, Liu W, Gao W, et al. Identification and characterization of the dominant lactic acid bacteria from kurut:The naturally fermented yak milk in Qinghai, China[J]. Journal of General & Applied Microbiology, 2010, 56(1):1-10.
[6] Menghe B, Liu W J, Wu R, et al. Evaluation of potential probiotics properties of the screened Lactobacilli isolated from home-made kou-miss in Mongolia[J]. Annals of Microbiology, 2009, 59(3):493-498.
[7] Sun T S, Zhao S P, Wang H K, et al. ACE-inhibitory activity and gam-ma-aminobutyric acid content of fermented skim milk by Lactobacillus helveticus, isolated from Xinjiang koumiss in China[J]. European Food Research and Technology, 2009, 228(4):607-612.
[8] Wang J, Guo Z, Zhang Q, et al. Fermentation characteristics and transit tolerance of probiotic Lactobacillus casei Zhang in soymilk and bovine milk during storage[J]. Journal of Dairy Science, 2009, 92(6):2468-2476.
[9] Wu R, Wang L, Wang J, et al. Isolation and preliminary probiotic selec-tion of lactobacilli from koumiss in Inner Mongolia[J]. Journal of Basic Microbiology, 2009, 49(3):318-326.
[10] Wen Y Z, Wu R N, Zhi H S, et al. Molecular cloning and characteriza-tion of bile salt hydrolase in Lactobacillus casei Zhang[J]. Annals of Microbiology, 2009, 59(4):721-726.
[11] Zhang W, Sun Z, Bilige M, et al. Complete genome sequence of probi-otic Lactobacillus plantarum P-8 with antibacterial activity[J]. Journal of Biotechnology, 2015, 193(41/42):241-247.
[12] Zhang W Y, Yu D L, Sun Z H, et al. Preliminary analysis of glutathi-one S-transferase homolog from Lactobacillus casei Zhang[J]. Annals of Microbiology, 2009, 59(4):727-731.
[13] Zhang W, Yu D, Sun Z, et al. Complete genome sequence of Lactoba-cillus casei Zhang, a new probiotic strain isolated from traditional homemade koumiss in Inner Mongolia, China[J]. Journal of Bacteriolo-gy, 2010, 192(19):5268-5269.
[14] Zhao W, Chen Y, Sun Z, et al. Complete genome sequence of lactoba-cillus helveticus H10[J]. Journal of Bacteriology, 2011, 193(10):2666-2667.
[15] Sun Z, Harris H M B, Mccann A, et al. Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera[J]. Nature Communications, 2015, 6(1):8322.
[16] Kotzamanidis C, Kourelis A, Litopoulou-Tzanetaki E, et al. Evaluation of adhesion capacity, cell surface traits and immunomodulatory activi-ty of presumptive probiotic Lactobacillus strains[J]. International Jour-nal of Food Microbiology, 2010, 140(2/3):154-163.
[17] Kourelis A, Zinonos I, Kakagianni M, et al. Validation of the dorsal air pouch model to predict and examine immunostimulatory responses in the gut[J]. Journal of Applied Microbiology, 2010, 108(1):274-284.
[18] Galdeano C M, Perdig N G. The probiotic bacterium Lactobacillus ca-sei induces activation of the gut mucosal immune system through in-nate immunity[J]. Clinical & Vaccine Immunology, 2006, 13(2):219-226.
[19] Castillo N A, Perdig N G, Leblanc A D M D. Oral administration of a probiotic Lactobacillus modulates cytokine production and TLR expres-sion improving the immune response against Salmonella enterica se-rovar Typhimurium infection in mice[J]. BMC Microbiology, 2011, 11(41):177.
[20] Jim Nez E, Fern Ndez L, Maldonado A, et al. Oral administration of Lactobacillus strains isolated from breast milk as an alternative for the treatment of infectious mastitis during lactation[J]. Applied and en-vironmental microbiology, 2008, 74(15):4650-4655.
[21] Kim S, Singh V P, Seo Y, et al. Treatment of infectious mastitis dur-ing lactation:Antibiotics versus oral administration of Lactobacilli iso-lated from breast milk[J]. Clinical Infectious Diseases, 2010, 50(12):1551-1558.
[22] Vázquez-Fresno R, Llorach R, Marinic J, et al. Urinary metabolomic fingerprinting after consumption of a probiotic strain in women with mastitis[J]. Pharmacological Research, 2014, 87(9):160-165.
[23] Wang Y, Xie J, Wang N, et al. Zhang modulate cytokine and Tolllike receptor expression and beneficially regulate poly I:C-induced im-mune responses in RAW264.7 macrophages[J]. Microbiology & Immu-nology, 2013, 57(1):54-62.
[24] Wang Y, Xie J, Li Y, et al. Probiotic Lactobacillus casei Zhang reduc-es pro-inflammatory cytokine production and hepatic inflammation in a rat model of acute liver failure[J]. European Journal of Nutrition, 2016, 55(2):821-831.
[25] Wang Y, Li Y, Xie J, et al. Protective effects of probiotic Lactobacillus casei Zhang against endotoxin-and d-galactosamine-induced liver in-jury in rats via anti-oxidative and anti-inflammatory capacities[J]. In-ternational Immunopharmacology, 2013, 15(1):30-37.
[26] Zhang Y, Du R T, He Q W, et al. Effect of lactobacillus casei Zhang administration on liver lipids metabolism of high-fat diet induced hy-percholesterolemia rats[J]. Scientia Agricultura Sinica, 2012, 13(1):33-7.
[27] Zhang Y, Du R T, Wang L F, et al. The antioxidative effects of probi-otic Lactobacillus casei Zhang on the hyperlipidemic rats[J]. European Food Research & Technology, 2010, 231(1):151-158.
[28] Zhang Y, Guo X, Guo J, et al. Lactobacillus casei reduces susceptibili-ty to type 2 diabetes via microbiota-mediated body chloride ion influx[J]. Scientific Reports, 2014, 4(4):5654.
[29] Zhang J, Wang L, Guo Z, et al. 454 pyrosequencing reveals changes in the faecal microbiota of adults consuming Lactobacillus casei Zhang[J]. Fems Microbiology Ecology, 2014, 88(3):612-622.
[30] Kwok L Y, Wang L, Zhang J, et al. A pilot study on the effect of Lac-tobacillus casei Zhang on intestinal microbiota parameters in Chinese subjects of different age[J]. Beneficial Microbes, 2014, 5(3):295-304.
[31] Wang L, Zhang J, Guo Z, et al. Effect of oral consumption of probiotic Lactobacillus planatarum P-8 on fecal microbiota, SIgA, SCFAs, and TBAs of adults of different ages[J]. Nutrition, 2014, 30(7/8):776-783.
[32] Kwok L Y, Guo Z, Zhang J, et al. The impact of oral consumption of Lactobacillus plantarum P-8 on faecal bacteria revealed by pyrose-quencing[J]. Beneficial Microbes, 2015, 1(1):1-9.
[33] Iemoli E, Trabattoni D, Parisotto S, et al. Probiotics reduce gut micro-bial translocation and improve adult atopic dermatitis[J]. Journal of Clinical Gastroenterology, 2012, 46(Suppl 1):S33-S40.
[34] Wang H K, Yan H, Jing S, et al. Activity against plant pathogenic fun-gi of Lactobacillus plantarum IMAU10014 isolated from Xinjiang kou-miss in China[J]. Annals of Microbiology, 2011, 61(4):879-885.
[35] Wang H, Shi J, Zhang H, et al. A survey of some antifungal properties of lactic acid bacteria isolates from koumiss in China[J]. International Journal of Dairy Technology, 2011, 64(4):585-590.
[36] Li C, Chen Y, Kwok L Y, et al. Identification of potential probiotic Lactobacillus plantarum isolates with broad-spectrum antibacterialac-tivity[J]. Dairy Science & Technology, 2015, 95(3):381-392.
[37] Yu H J, Chen Y F, Yang H J, et al. Screening for Lactobacillus planta-rum with potential inhibitory activity against enteric pathogens[J]. An-nals of Microbiology, 2015, 65(3):1-9.
[38] Bäckhed F, Ley R E, Sonnenburg J L, et al. Host-Bacterial Mutual-ism in the Human Intestine[J]. Science, 2005, 307(5717):1915-1920.
[39] Dethlefsen L, Mcfall-Ngai M, Relman D A. An ecological and evolu-tionary perspective on human-microbe mutualism and disease[J]. Na-ture, 2007, 449(7164):811-818.
[40] Xu M Q, Cao H L, Wang W, et al. Fecal microbiota transplantation broadening its application beyond intestinal disorders[J]. World Jour-nal of Gastroenterology, 2015, 21(1):47-48.
[41] Round J L, Mazmanian S K. Inducible Foxp3+ regulatory T-cell devel-opment by a commensal bacterium of the intestinal microbiota[J]. PNAS, 2010, 107(27):12204-12209.
[42] Smits L P, Bouter K E C, Vos W M D, et al. Therapeutic potential of fecal microbiota transplantation[J]. Gastroenterology, 2013, 145(5):946-53.
[43] Moco S, Ross A B. Can we use metabolomics to understand changes to gut microbiota populations and function? A nutritional perspective[J]. Molecular & Integrative Toxicology, 2015:83-108.
[44] Tuomisto S, Pessi T, Collin P, et al. Changes in gut bacterial popula-tions and their translocation into liver and ascites in alcoholic liver cirrhotics[J]. BMC Gastroenterology, 2014, 14(1):1-8.
[45] Khoruts A, Dicksved J, Jansson J K, et al. Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clos-tridium difficile-associated diarrhea[J]. Journal of Clinical Gastroenter-ology, 2010, 44(5):354.
[46] Bauer M P, Notermans D W, van Benthem B H, et al. Clostridium dif-ficile infection in Europe:A hospital-based survey[J]. The Lancet, 2011, 377(9759):63-73.
[47] Alanne S. Nutrition economic evaluation of allergy treatment in infants and children:Background for probiotic studies[J]. Microb Ecol Health Dis, 2012, 23(5):234-237.
[48] Shovna, Senan S, Prajapati J B. Food allergy:Its control by probioticA review[J]. Asian Journal of Dairy & Food Research, 2013, 32(4):251-256.
[49] Lubis A. Food allergy gastrointestinal manifestations:43969 probiotic effect of the regulation of innate immune response, dc and adaptive cellular immune response and the balance TH1, TH2, TREG through sensors TLR-2 and TLR-4, on the intestinal mucosa in BALB/C health status and Balb/C status of exposure to LPS[J]. World Allergy Organization Journal, 2012, 4(5):466-470.
[50] Ashraf R, Shah N P. Immune system stimulation by probiotic microor-ganisms[J]. Critical Reviews in Food Science & Nutrition, 2014, 54(7):938-956.
[51] Chang J Y, Antonopoulos D A, Kalra A, et al. Decreased diversity of the fecal microbiome in recurrent clostridium difficile-associated diar-rhea[J]. Journal of Infectious Diseases, 2008, 197(3):435-438.
[52] Jeffery I B, O'Toole P W, Öhman L, et al. An irritable bowel syn-drome subtype defined by species-specific alterations in faecal micro-biota[J]. Gut, 2012, 61(7):997.
[53] Rajilic stojanovic M, Biagi E, Heilig H G, et al. Global and deep mo-lecular analysis of microbiota signatures in fecal samples from pa-tients with irritable bowel syndrome[J]. Gastroenterology, 2011, 141(5):1792-1801.
[54] Frémont M, Coomans D, Massart S, et al. High-throughput 16S rRNA gene sequencing reveals alterations of intestinal microbiota in myalgic encephalomyelitis/chronic fatigue syndrome patients[J]. Anaerobe, 2013, 22:50-56.
[55] Lakhan S E, Kirchgessner A. Gut inflammation in chronic fatigue syn-drome[J]. Nutrition & Metabolism, 2010, 7(1):79.
[56] Sheedy J R, Wettenhall R E, Scanlon D, et al. Increased d-lactic acid intestinal bacteria in patients with chronic fatigue syndrome[J]. Vivo, 2009, 23(4):621-628
[57] Koren O, Spor A, Felin J, et al. Human oral, gut, and plaque microbio-ta in patients with atherosclerosis[J]. PNAS, 2011, 108(11):4592-4598.
[58] Karlsson F H, Fåk F, Nookaew I, et al. Symptomatic atherosclerosis is associated with an altered gut metagenome[J]. Nature Communica-tions, 2012, 3(4):1245.
[59] Guo Z, Zhang J, Wang Z, et al. Intestinal microbiota distinguish gout patients from healthy humans[J]. Scientific Reports, 2016, 6(2):6-12.
[60] Duncan S H, Lobley G E, Holtrop G, et al. Human colonic microbiota associated with diet, obesity and weight loss[J]. International Journal of Obesity, 2008, 32(11):720-1724.
[61] Amar J, Burcelin R, Ruidavets J B, et al. Energy intake is associated with endotoxemia in apparently healthy men[J]. American Journal of Clinical Nutrition, 2008, 87(5):1219-1223.
[62] Teixeira T F, Collado M C, Ferreira C L, et al. Potential mechanisms for the emerging link between obesity and increased intestinal permea-bility[J]. Nutrition Research, 2012, 32(9):637-647.
[63] Cani P D, Amar J, Iglesias M A, et al. Metabolic endotoxemia initiates obesity and insulin resistance[J]. Diabetes, 2007, 56(7):1761-1762.
[64] Everard A, Belzer C, Geurts L, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity[J]. PNAS, 2013, 110(22):9066-9071.
[65] Zhu Q, Jin Z, Wu W, et al. Analysis of the intestinal lumen microbio-ta in an animal model of colorectal cancer[J]. PloS One, 2014, 9(6):e90849.
[66] Zhang J, Guo Z, Xue Z, et al. A phylo-functional core of gut microbio-ta in healthy young Chinese cohorts across lifestyles, geography and ethnicities[J]. Isme Journal, 2015, 9(9):1979.
[67] Kwok L Y, Zhang J, Guo Z, et al. Characterization of fecal microbiota across seven Chinese ethnic groups by quantitative polymerase chain reaction[J]. PloS One, 2014, 9(4):e93631.
[68] Liu W, Zhang J, Wu C, et al. Unique features of ethnic mongolian gut microbiome revealed by metagenomic analysis[J]. Scientific Reports, 2016, 6(5):211-215.
[69] Zhang J, Zheng Y, Guo Z, et al. The diversity of intestinal microbiota of Mongolians living in Inner Mongolia, China[J]. Beneficial Microbes, 2013, 4(4):319-328.
[70] Zhang J, Guo Z, Lim A A Q, et al. Mongolians core gut microbiota and its correlation with seasonal dietary changes[J]. Scientific Reports, 2014, 4(2969):5001.
[71] Li J, Xu H, Sun Z, et al. Effect of dietary interventions on the intesti-nal microbiota of Mongolian hosts[J]. Science Bulletin, 2016, 20(1):1605-1614.
[72] Mccarthy M I. Genetics of T2DM in 2016:Biological and translational insights from T2DM genetics[J]. Nature Reviews Endocrinology, 2017, 13(2):71-72.
[73] Gecse K B, Lakatos P L. IBD in 2016:Biologicals and biosimilars in IBD-the road to personalized treatment[J]. Nature Reviews Gastroen-terology & Hepatology, 2017, 14(2).
[74] Dinan T G, Cryan J F. Gut-brain axis in 2016:Brain-gut-microbiota axis-Mood, metabolism and behaviour[J]. Nature Reviews Gastroenter-ology & Hepatology, 2017, 14(2):69.
[75] Garrett W S. Gut microbiota in 2016:A banner year for gut microbio-ta research[J]. Nature Reviews Gastroenterology & Hepatology, 2017, 14(2):78-80.