[1] Dethlefsen L, Huse S, Sogin M L, et al. The pervasive effects of an anti-biotic on the human gut microbiota, as revealed by deep 16S rRNA se-quencing[J]. PloS Biology, 2008, 6(11):e280.
[2] De La Cochetière M F, Durand T, Lepage P, et al. Resilience of the dominant human fecal microbiota upon short-course antibiotic challenge[J]. Journal of Clinical Microbiology, 2005, 43(11):5588-5592.
[3] Jernberg C, Löfmark S, Edlund C, et al. Long-term ecological impacts of antibioticadministration on the human intestinal microbiota[J]. Inter-national Society for Microbial Ecology, 2007, 1(1):56-66.
[4] Dethlefsen L, Relman D A. Incomplete recovery and individualized re-sponses of the human distal gut microbiota to repeated antibiotic pertur-bation[J]. Proceedings of the National Academy of Sciences of the Unit-ed States of America, 2011, 108(Suppl 1):4554-4561.
[5] Zaura E, Brandt B W, Teixeira de Mattos M J, et al. Same exposure but two radically different responses to antibiotics:Resilience of the sali-vary microbiome versus long-term microbial shifts in feces[J]. Microbi-ology, 2015, 6(6):e01693-15.
[6] Langdon A, Crook N, Dantas G, et al. The effects of antibiotics on the microbiome throughout development and alternative approaches for ther-apeutic modulation[J]. Genome Medicine, 2016, 8(1):39.
[7] Aloisio I, Mazzola G, Corvaglia L T, et al. Influence of intrapartum anti-biotic prophylaxis against group B Streptococcus on the early newborn gut composition and evaluation of the anti-Streptococcus activity of Bifi-dobacterium strains[J]. Applied Microbiology and Biotechnology, 2014, 98(13):6051-6060.
[8] Cox L M, Blaser M J. Antibiotics in early life and obesity[J]. Nature Re-views Endocrinology, 2015, 11(3):182-90.
[9] Saari A, Virta L J, Sankilampi U, et al. Antibiotic exposure in infancy and risk of being overweight in the first 24 months of life[J]. American Academy of Pediatrics, 2015, 135(4):617-626.
[10] Korpela K, Salonen A, Virta L J, et al. Intestinal microbiome is relat-ed to lifetime antibiotic use in Finnish pre-school children[J]. Nature Communications, 2016, 7:10410.
[11] Stadler M, Dersch P. How to overcome the antibiotic crisis-Facts, challenges, technologies and future perspectives[M]. Switzerland:Springer International Publishing, 2017:126-129.
[12] Lewis B B, Pamer E G. Microbiota-based therapies for clostridium dif-ficile and antibiotic-resistant enteric infections[J]. Annual Review of Microbiology, 2017, 71:157-178.
[13] Staley C, Kaiser T, Beura L K, et al. Stable engraftment of human mi-crobiota into mice with a single oral gavage following antibiotic condi-tioning[J]. Microbiome, 2017, 5(1):87.
[14] Pérez-Cobas A E, Gosalbes M J, Friedrichs A, et al. Gut microbiota disturbance during antibiotic therapy:A multi-omic approach[J]. Gut, 2013, 62(11):1591-601.
[15] 游懿君, 韩小龙, 郑晓皎, 等. 肠道菌群与大脑双向互动的研究进展[J]. 上海交通大学学报(医学版), 2017, 37(2):253-257. YouYijun, Han Xiaolong, Zheng Xiaojiao, et al. Research progress of bidirectional interaction between intestinal flora and brain[J]. Journal of ShanghaiJiaotong University(Medical Science Edition), 2017, 37(2):253-257.
[16] Minter M R, Zhang C, Leone V, et al. Antibiotic-induced perturba-tions in gut microbial diversity influences neuro-inflammation and am-yloidosis in a murine model of Alzheimer's disease[J]. Scientific Re-ports, 2016, 6:30028.
[17] Harach T, Marungruang N, Duthilleul N, et al. Reduction of Abeta am-yloid pathology in APPPS1 transgenic mice in the absence of gut mi-crobiota[J]. Scientific Reports, 2017, 7:41802.
[18] Wu X, Tian Z. Gut-liver axis:gut microbiota in shaping hepatic in-nate immunity[J]. Science China Life sciences, 2017. https://link.springer.com/article/10.1007/s11427-017-9128-3.
[19] Wiest R, Albillos A, Trauner M, et al. Targeting the gut-liver axis in liver disease[J]. Journal of Hepatology, 2017, 67(5):1084-1103.
[20] Xue L, He J, Gao N, et al. Probiotics may delay the progression of nonalcoholic fatty liver disease by restoring the gut microbiota struc-ture and improving intestinal endotoxemia[J]. Scientific Reports, 2017, 7:45176.
[21] Lopetuso L R, Petito V, Scaldaferri F, et al. Gut microbiota modula-tion and mucosal immunity:Focus on rifaximin[J]. Mini Reviews in Medicinal Chemistry, 2015, 16(3):179-185.
[22] Ponziani F R, Scaldaferri F, Petito V, et al. The role of antibiotics in gut microbiota modulation:The eubiotic effects of rifaximint[J]. Diges-tive Diseases, 2016, 34(3):269-278.
[23] Angelakis E, Merhej V, Raoult D. Related actions of probiotics and antibiotics on gut microbiota and weight modification[J]. The Lancet. Infectious diseases, 2013, 13(10):889-899.
[24] Ghosh T S, Gupta S S, Nair G B, et al. In silico analysis of antibiotic resistance genes in the gut microflora of individuals from diverse geog-raphies and age-groups[J]. PLoS One, 2013, 8(12):e83823.
[25] Hu Y, Yang X, Qin J, et al. Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota[J]. Nature Communications, 2013, 4:2151.
[26] Clemente J C, Pehrsson E C, Blaser M J, et al. The microbiome of un-contacted Amerindians[J]. Science Advances, 2015, 1(3):e1500183.
[27] D'Costa V M, King C E, Kalan L, et al. Antibiotic resistance is ancient[J]. Nature, 2011, 477(7365):457-461.
[28] Forsberg K J, Reyes A, Wang B, et al. The shared antibiotic resistome of soil bacteria and human pathogens[J]. Science, 2012, 337(6098):1107-1111.
[29] Gosalbes M J, Vallès Y, Jiménez-Hernández N, et al. High frequen-cies of antibiotic resistance genes in infants' meconium and early fe-cal samples[J]. Journal of Developmental Origins of Health and Dis-ease, 2016, 7(1):35-44.
[30] Zhang L, Kinkelaar D, Huang Y, et al. Acquired antibiotic resistance:Are we born with it[J]. Applied and Environmental Microbiology, 2011, 77(20):7134-7141.
[31] Frye J G, Lindsey R L, Meinersmann R J, et al. Related antimicrobial resistance genes detected in different bacterial species co-isolated from swine fecal samples[J]. Foodborne Pathogens and Disease, 2011, 8(6):663-679.
[32] Johnning A, Kristiansson E, Angelin M, et al. Quinolone resistance mutations in the faecal microbiota of Swedish travellers to India[J]. BMC Microbiology, 2015, 15:235.
[33] Su J Q, An X L, Li B, et al. Metagenomics of urban sewage identifies an extensively shared antibiotic resistome in China[J]. Microbiome, 2017, 5(1):84.
[34] 刘昌孝. 当代抗生素发展的挑战与思考[J]. 中国抗生素杂志, 2017, 42(1):1-12. Liu Changxiao. Challenges and thinking of current antibiotic development[J]. Chinese Journal of Antibiotics, 2017, 42(1):1-12.
[35] 陈代杰. 新世纪以来全球新型抗菌药物研发及前沿研究进展[J]. 中国抗生素杂志, 2017, 42(3):161-168. Chen Daijie. Progress in research and development of new antimicrobial agents worldwide since the beginning of the new century[J]. Chinese Journal of Antibiotics, 2017, 42(3):161-168.
[36] Chu J, Vila-Farres 1, Inoyama D, et al. Discovery of MRSA active an-tibiotics using primary sequence from the human microbiome[J]. Na-ture Chemical Biology, 2016(12):1004-1006.
[37] Cammarota G, Ianiro G, Tilg H, et al. European consensus conference on faecal microbiota transplantation in clinical practice[J]. Gut, 2017, 66(4):569-580.