专题论文

抗生素与肠道菌群关系研究进展

  • 李子艳 ,
  • 刘丽丽 ,
  • 毛艳艳 ,
  • 高柳滨
展开
  • 中国科学院上海药物研究所信息中心, 上海 201203
李子艳,馆员,研究方向为药物情报分析,电子信箱:zyli@simm.ac.cn

收稿日期: 2017-08-30

  修回日期: 2017-10-30

  网络出版日期: 2017-11-16

基金资助

中国科学院战略性先导科技专项(XDA12050201)

Current research on the relationship between antibiotics and intestinal flora

  • LI Ziyan ,
  • LIU Lili ,
  • MAO Yanyan ,
  • GAO Liubin
Expand
  • Intelligence Research Department, Information Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China

Received date: 2017-08-30

  Revised date: 2017-10-30

  Online published: 2017-11-16

摘要

从抗生素与肠道菌群的关系出发,在抗生素角度,概述了抗生素对肠道菌群构成、肠道定植抗力、菌群类别及代谢活动的影响,综述了抗生素通过调节肠道菌群恢复肠-脑轴、肠-肝轴稳态,延缓非感染性疾病的研究进展。在肠道菌群角度,简述了肠道菌群在抗生素耐药基因储存传播、新型抗生素发现过程中的特别作用。

本文引用格式

李子艳 , 刘丽丽 , 毛艳艳 , 高柳滨 . 抗生素与肠道菌群关系研究进展[J]. 科技导报, 2017 , 35(21) : 26 -31 . DOI: 10.3981/j.issn.1000-7857.2017.21.002

Abstract

Based on the relationship between antibiotics and intestinal flora, this paper summarizes the effects of antibiotics on intestinal flora composition, intestinal colonization resistance, flora and metabolic activities, and then explores antibiotics modulating the intestinal flora to restore the steady state of gut-brain axis or gut-liver axis for delaying the progress of diseases. In the perspective of intestinal flora, the paper briefs the special role of intestinal flora in antibiotic resistance gene storage and transmission, as well as new antibiotic discovery. Further research on the relationship between antibiotics and intestinal flora and their interactions will have a reference value on strategic use of antibiotics or alternative approach development for modulating intestinal flora.

参考文献

[1] Dethlefsen L, Huse S, Sogin M L, et al. The pervasive effects of an anti-biotic on the human gut microbiota, as revealed by deep 16S rRNA se-quencing[J]. PloS Biology, 2008, 6(11):e280.
[2] De La Cochetière M F, Durand T, Lepage P, et al. Resilience of the dominant human fecal microbiota upon short-course antibiotic challenge[J]. Journal of Clinical Microbiology, 2005, 43(11):5588-5592.
[3] Jernberg C, Löfmark S, Edlund C, et al. Long-term ecological impacts of antibioticadministration on the human intestinal microbiota[J]. Inter-national Society for Microbial Ecology, 2007, 1(1):56-66.
[4] Dethlefsen L, Relman D A. Incomplete recovery and individualized re-sponses of the human distal gut microbiota to repeated antibiotic pertur-bation[J]. Proceedings of the National Academy of Sciences of the Unit-ed States of America, 2011, 108(Suppl 1):4554-4561.
[5] Zaura E, Brandt B W, Teixeira de Mattos M J, et al. Same exposure but two radically different responses to antibiotics:Resilience of the sali-vary microbiome versus long-term microbial shifts in feces[J]. Microbi-ology, 2015, 6(6):e01693-15.
[6] Langdon A, Crook N, Dantas G, et al. The effects of antibiotics on the microbiome throughout development and alternative approaches for ther-apeutic modulation[J]. Genome Medicine, 2016, 8(1):39.
[7] Aloisio I, Mazzola G, Corvaglia L T, et al. Influence of intrapartum anti-biotic prophylaxis against group B Streptococcus on the early newborn gut composition and evaluation of the anti-Streptococcus activity of Bifi-dobacterium strains[J]. Applied Microbiology and Biotechnology, 2014, 98(13):6051-6060.
[8] Cox L M, Blaser M J. Antibiotics in early life and obesity[J]. Nature Re-views Endocrinology, 2015, 11(3):182-90.
[9] Saari A, Virta L J, Sankilampi U, et al. Antibiotic exposure in infancy and risk of being overweight in the first 24 months of life[J]. American Academy of Pediatrics, 2015, 135(4):617-626.
[10] Korpela K, Salonen A, Virta L J, et al. Intestinal microbiome is relat-ed to lifetime antibiotic use in Finnish pre-school children[J]. Nature Communications, 2016, 7:10410.
[11] Stadler M, Dersch P. How to overcome the antibiotic crisis-Facts, challenges, technologies and future perspectives[M]. Switzerland:Springer International Publishing, 2017:126-129.
[12] Lewis B B, Pamer E G. Microbiota-based therapies for clostridium dif-ficile and antibiotic-resistant enteric infections[J]. Annual Review of Microbiology, 2017, 71:157-178.
[13] Staley C, Kaiser T, Beura L K, et al. Stable engraftment of human mi-crobiota into mice with a single oral gavage following antibiotic condi-tioning[J]. Microbiome, 2017, 5(1):87.
[14] Pérez-Cobas A E, Gosalbes M J, Friedrichs A, et al. Gut microbiota disturbance during antibiotic therapy:A multi-omic approach[J]. Gut, 2013, 62(11):1591-601.
[15] 游懿君, 韩小龙, 郑晓皎, 等. 肠道菌群与大脑双向互动的研究进展[J]. 上海交通大学学报(医学版), 2017, 37(2):253-257. YouYijun, Han Xiaolong, Zheng Xiaojiao, et al. Research progress of bidirectional interaction between intestinal flora and brain[J]. Journal of ShanghaiJiaotong University(Medical Science Edition), 2017, 37(2):253-257.
[16] Minter M R, Zhang C, Leone V, et al. Antibiotic-induced perturba-tions in gut microbial diversity influences neuro-inflammation and am-yloidosis in a murine model of Alzheimer's disease[J]. Scientific Re-ports, 2016, 6:30028.
[17] Harach T, Marungruang N, Duthilleul N, et al. Reduction of Abeta am-yloid pathology in APPPS1 transgenic mice in the absence of gut mi-crobiota[J]. Scientific Reports, 2017, 7:41802.
[18] Wu X, Tian Z. Gut-liver axis:gut microbiota in shaping hepatic in-nate immunity[J]. Science China Life sciences, 2017. https://link.springer.com/article/10.1007/s11427-017-9128-3.
[19] Wiest R, Albillos A, Trauner M, et al. Targeting the gut-liver axis in liver disease[J]. Journal of Hepatology, 2017, 67(5):1084-1103.
[20] Xue L, He J, Gao N, et al. Probiotics may delay the progression of nonalcoholic fatty liver disease by restoring the gut microbiota struc-ture and improving intestinal endotoxemia[J]. Scientific Reports, 2017, 7:45176.
[21] Lopetuso L R, Petito V, Scaldaferri F, et al. Gut microbiota modula-tion and mucosal immunity:Focus on rifaximin[J]. Mini Reviews in Medicinal Chemistry, 2015, 16(3):179-185.
[22] Ponziani F R, Scaldaferri F, Petito V, et al. The role of antibiotics in gut microbiota modulation:The eubiotic effects of rifaximint[J]. Diges-tive Diseases, 2016, 34(3):269-278.
[23] Angelakis E, Merhej V, Raoult D. Related actions of probiotics and antibiotics on gut microbiota and weight modification[J]. The Lancet. Infectious diseases, 2013, 13(10):889-899.
[24] Ghosh T S, Gupta S S, Nair G B, et al. In silico analysis of antibiotic resistance genes in the gut microflora of individuals from diverse geog-raphies and age-groups[J]. PLoS One, 2013, 8(12):e83823.
[25] Hu Y, Yang X, Qin J, et al. Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota[J]. Nature Communications, 2013, 4:2151.
[26] Clemente J C, Pehrsson E C, Blaser M J, et al. The microbiome of un-contacted Amerindians[J]. Science Advances, 2015, 1(3):e1500183.
[27] D'Costa V M, King C E, Kalan L, et al. Antibiotic resistance is ancient[J]. Nature, 2011, 477(7365):457-461.
[28] Forsberg K J, Reyes A, Wang B, et al. The shared antibiotic resistome of soil bacteria and human pathogens[J]. Science, 2012, 337(6098):1107-1111.
[29] Gosalbes M J, Vallès Y, Jiménez-Hernández N, et al. High frequen-cies of antibiotic resistance genes in infants' meconium and early fe-cal samples[J]. Journal of Developmental Origins of Health and Dis-ease, 2016, 7(1):35-44.
[30] Zhang L, Kinkelaar D, Huang Y, et al. Acquired antibiotic resistance:Are we born with it[J]. Applied and Environmental Microbiology, 2011, 77(20):7134-7141.
[31] Frye J G, Lindsey R L, Meinersmann R J, et al. Related antimicrobial resistance genes detected in different bacterial species co-isolated from swine fecal samples[J]. Foodborne Pathogens and Disease, 2011, 8(6):663-679.
[32] Johnning A, Kristiansson E, Angelin M, et al. Quinolone resistance mutations in the faecal microbiota of Swedish travellers to India[J]. BMC Microbiology, 2015, 15:235.
[33] Su J Q, An X L, Li B, et al. Metagenomics of urban sewage identifies an extensively shared antibiotic resistome in China[J]. Microbiome, 2017, 5(1):84.
[34] 刘昌孝. 当代抗生素发展的挑战与思考[J]. 中国抗生素杂志, 2017, 42(1):1-12. Liu Changxiao. Challenges and thinking of current antibiotic development[J]. Chinese Journal of Antibiotics, 2017, 42(1):1-12.
[35] 陈代杰. 新世纪以来全球新型抗菌药物研发及前沿研究进展[J]. 中国抗生素杂志, 2017, 42(3):161-168. Chen Daijie. Progress in research and development of new antimicrobial agents worldwide since the beginning of the new century[J]. Chinese Journal of Antibiotics, 2017, 42(3):161-168.
[36] Chu J, Vila-Farres 1, Inoyama D, et al. Discovery of MRSA active an-tibiotics using primary sequence from the human microbiome[J]. Na-ture Chemical Biology, 2016(12):1004-1006.
[37] Cammarota G, Ianiro G, Tilg H, et al. European consensus conference on faecal microbiota transplantation in clinical practice[J]. Gut, 2017, 66(4):569-580.
文章导航

/