研究论文

一种基于协同过滤的电动汽车充电推荐方法

  • 卜凡鹏 ,
  • 田世明 ,
  • 高晶晶 ,
  • 齐林海
展开
  • 1. 中国电力科学研究院, 北京 100192;
    2. 华北电力大学控制与计算机工程学院, 北京 102206
卜凡鹏,工程师,研究方向为智能用电大数据,电子信箱:bufanpeng@epri.sgcc.com.cn

收稿日期: 2017-09-01

  修回日期: 2017-10-15

  网络出版日期: 2017-11-16

基金资助

国家高技术研究发展计划(863计划)项目(2015AA050203);国家电网公司科技项目(52094017002U)

Recommendation method for electric vehicle charging based on collaborative filtering

  • BU Fanpeng ,
  • TIAN Shiming ,
  • GAO Jingjing ,
  • QI Linhai
Expand
  • 1. China Electric Power Research Institute, Beijing 100192, China;
    2. School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China

Received date: 2017-09-01

  Revised date: 2017-10-15

  Online published: 2017-11-16

摘要

基于大量的充电行为数据,建立电动汽车用户的充电兴趣模型,将用户感兴趣但未发现的最佳充电选择推荐给用户,实现充电行为有序引导是一个重要问题。本文针对电动汽车充电提出一种基于协同过滤算法的推荐模型,得出最佳推荐模型参数指标,充电10次以下的新用户采用基于用户的协同过滤算法,充电10次以上的老用户采用基于物品的协同过滤算法;基于用户的协同过滤算法的最佳邻居数和推荐列表长度均为3;基于物品的协同过滤算法的最佳推荐列表长度为4。指出负荷聚合商可以结合参与需求响应计划的情况,对推荐列表进行再优化,将与需求响应冲突的推荐信息过滤掉,从而实现有序充电控制。

本文引用格式

卜凡鹏 , 田世明 , 高晶晶 , 齐林海 . 一种基于协同过滤的电动汽车充电推荐方法[J]. 科技导报, 2017 , 35(21) : 61 -67 . DOI: 10.3981/j.issn.1000-7857.2017.21.007

Abstract

Based on a large number of charging behavior data, a charging interest model of electric vehicle users is established. The best charging options which users are interested in but have not found are recommended and charging behavior is orderly guided. In this paper, a recommended model based on a collaborative filtering algorithm is proposed for electric vehicle charging, and the best model parameter index is obtained through test and evaluation. New users with 10 times or less may use the user-based collaborative filtering algorithm while old users who have charged more than 10 times may adopt the collaborative filtering algorithm based on items. The optimal neighbor and recommended list length is 3 for the user-based collaborative filtering algorithm, and 4 for the algorithm based on items. The paper points out that the load aggregator can re-optimize the recommendation list in combination with the demand response plan and filter out the recommended information that conflicts with the demand response to realize the orderly charging control.

参考文献

[1] 徐智威, 胡泽春, 宋永华, 等. 充电站内电动汽车有序充电策略[J]. 电力系统自动化, 2012, 36(11):38-43. Xu Zhiwei, Hu Zechun, Song Yonghua, et al. Coordinated charging of plug-in electric vehicles in charging stations[J]. Automation of Electric Power System, 2012, 36(11):38-43.
[2] 胡泽春, 宋永华, 徐智威, 等. 电动汽车接入电网的影响与利用[J]. 中国电机工程学报, 2012, 32(2):1-10. Hu Zechun, Song Yonghua, Xu Zhiwei, et al. Impacts and utilization of electric vehicles integration into power systems[J]. Proceedings of the CSEE, 2012, 32(2):1-10.
[3] 王锡凡, 邵成成, 王秀丽, 等. 电动汽车充电负荷与调度控制策略综述[J]. 中国电机工程学报, 2013, 33(1):1-10. Wang Xifan, Shao Chengcheng, Wang Xiuli, et al. Survey of electric vehicle charging load and dispatch control strategies[J]. Proceedings of the CSEE, 2012, 32(2):1-10.
[4] 杨少兵, 吴命利, 姜久春, 等. 电动汽车充电站负荷建模方法[J]. 电网技术, 2013, 37(5):1190-1195. Yang Shaobing, Wu Mingli, Jiang Jiuchun, et al. An approach for load modeling of electric vehicle charging station[J]. Power System Technology, 2013, 37(5):1190-1195.
[5] 陆婷婷, 高赐威. 电动汽车充换电网络优化调度通用模型研究[J]. 电网技术, 2014, 38(4):2700-2707. Lu Tingting, Gao Ciwei. A general model for optimal scheduling of battery charging and renewal network[J]. Power System Technology, 2014, 38(4):2700-2707.
[6] 温剑锋, 陶顺, 肖湘宁, 等. 基于出行链随机模拟的电动汽车充电需求分析[J]. 电网技术, 2015, 39(6):1477-1484. Wen Jianfeng, Tao Shun, Xiao Xiangning, et al. Analysis on charging demand of EV based on stochastic simulation of trip chain[J]. Power System Technology, 2015, 39(6):1477-1484.
[7] 田立亭, 张明霞, 汪奂伶. 电动汽车对电网影响的评估和解决方案[J]. 中国电机工程学报, 2012, 32(31):43-49. Tian Liting, Zhang Mingxia, Wang Huanling. Evaluation and solutions for electric vehicles'impact on the grid[J]. Proceedings of the CSEE, 2012, 32(31):43-49.
[8] 胡泽春, 占恺峤, 徐智威, 等. 电动汽车与电网互动的关键问题分析与展望[J]. 电力建设, 2015, 36(7):6-13. Hu Zechun, Zhan Kaiqiao, Xu Zhiwei, et al. Analysis and outlook on the key problems of electric vehicle and power grid interaction[J]. Electric Power Construction, 2015, 36(7):6-13.
[9] 刘海璇, 曾平良, 马军, 等. 基于B2G模式下电动汽车参与电网互动运行策略[J]. 电力建设, 2015, 36(7):126-132. Liu Haixuan, Zeng Pingliang, Ma Jun, et al. Operation strategy of electric vehicles for interacting with the grid in battery to grid mode[J]. Electric Power Construction, 2015, 36(7):126-132.
[10] 李刚, 董耀众, 文福拴, 等. 基于移动社交网络平台的电动汽车充放电行为预测[J]. 电力系统自动化, 2016, 40(9):64-70. Li Gang, Dong Yaozhong, Wen Fushuan, et al. Prediction of charge and discharge behavior of electric vehicles based on mobile social network platform[J]. Automation of Electric Power Systems, 2016, 40(9):64-70.
[11] 项顶, 宋永华, 胡泽春, 等. 电动汽车参与V2G的最优峰谷电价研究[J]. 中国电机工程学报, 2013, 33(31):15-25. Xiang Ding, Song Yonghua, Hu Zechun, et al. Research on optimal time of use price for electric vehicle participating V2G[J]. Proceedings of the CSEE, 2013, 33(31):15-25.
[12] 薛禹胜, 赖业宁. 大能源思维与大数据思维的融合:(一)大数据与电力大数据[J]. 电力系统自动化, 2016, 40(1):1-8. Xue Yusheng, Lai Yening. The Fusion of big energy thinking and big data thinking(one):Big data vs. power big data[J]. Automation of Electric Power Systems, 2016, 40(1):1-8.
[13] 黄小庆, 陈颉, 陈永新, 等. 大数据背景下的充电站负荷预测方法[J]. 电力系统自动化, 2016, 40(12):68-74. Huang Xiaoqing, Chen Jie, Chen Yongxin, et al. Load forecasting method for charging station under large data background[J]. Automation of Electric Power Systems, 2016, 40(12):68-74.
[14] 陆凌蓉, 文福拴, 薛禹胜, 等. 电动汽车提供辅助服务的经济性分析[J]. 电力系统自动化, 2013, 37(14):43-49. Lu Lingrong, Wen Fushuan, Xue Yusheng, et al. Economic analysis of electric vehicles providing auxiliary service[J]. Automation of Electric Power Systems, 2013, 37(14):43-49.
[15] 王岱, 管晓宏, 吴江, 等. 基于车辆行驶行为特性建模的电动汽车充放电策略与分析[J]. 电网技术, 2014, 38(9):2322-2327. Wang Dai, Guan Xiaohong, Wu Jiang, et al. Vehicle driving pattern based modeling and analysis of centralized charging/discharging strategy for plug-in electric vehicles[J]. Power System Technology, 2014, 38(9):2322-2327.
[16] 张明霞, 田立亭, 杨水丽, 等. 考虑电动汽车充电负荷空间分布的系统特性分析[J]. 电力系统保护与控制,2014, 42(21):86-92. Zhang Mingxia, Tian Liting, Yang Shuili, et al. Influence of electric vehicle charging load distribution on power grid[J]. Power System Protection and Control, 2014, 42(21):86-92.
[17] 项亮. 推荐系统实践[M]. 北京:人民邮电出版社, 2015:1-4. Xiang Liang. Practice for recommender systems[M]. Beijing:Posts & Telecom Press, 2015:1-4.
[18] 李翠平, 蓝梦微, 邹本友, 等. 大数据与推荐系统[J]. 大数据, 2015(26):1-13. Li Cuiping, Lan Mengwei, Zou Benyou, et al. Big data and recommendation system[J]. Big Data Research, 2015(26):1-13.
[19] 中华人民共和国国家发展与改革委员会. 电动汽车充电基础设施发展指南(2015-2020年)[R/OL]. (2015-11-17)[2017-04-20]. http://www.ndrc.gov.cn/zcfb/zcfbtz/201511/t20151117_758762.html. National Development and Reform Commission. Electric vehicle charging infrastructure development guide (2015-2020)[R/OL]. (2015-11-17)[2017-04-20]. http://www.ndrc.gov.cn/zcfb/zcfbtz/201511/t2015-1117_758762.html.
文章导航

/