综述文章

高超声速飞行器建模与自主控制技术研究进展

  • 宗群 ,
  • 李勍 ,
  • 尤明 ,
  • 张睿隆 ,
  • 朱婉婉
展开
  • 天津大学电气与自动化工程学院, 天津 300072
宗群,教授,研究方向为飞行器制导控制与仿真,电子信箱:zongqun@tju.edu.cn

收稿日期: 2017-05-04

  修回日期: 2017-05-31

  网络出版日期: 2017-11-16

基金资助

国家自然科学基金项目(61673294)

New development of modeling and autonomous control for hypersonic vehicle

  • ZONG Qun ,
  • LI Qing ,
  • YOU Ming ,
  • ZHANG Ruilong ,
  • ZHU Wanwan
Expand
  • College of Electrical Engineering & Automation, Tianjin University, Tianjin 300072, China

Received date: 2017-05-04

  Revised date: 2017-05-31

  Online published: 2017-11-16

摘要

高超声速飞行器是国内外研究的热点问题。综述了高超声速飞行器建模与自主控制问题。阐明了高超声速飞行器的特点及控制难点,列举了典型的高超声速飞行器模型,从机理推导方法、计算流体力学(CFD)实验方法、模型简化技术和模型验证技术方面介绍了高超声速飞行器建模的研究进展,从传统滑模控制、高阶滑模控制、反步控制、自适应控制、轨迹线性化控制方面阐述了高超声速飞行器自主控制的研究进展,探讨了高超声速飞行器仿真平台开发的研究趋势。

本文引用格式

宗群 , 李勍 , 尤明 , 张睿隆 , 朱婉婉 . 高超声速飞行器建模与自主控制技术研究进展[J]. 科技导报, 2017 , 35(21) : 95 -106 . DOI: 10.3981/j.issn.1000-7857.2017.21.012

Abstract

Hypersonic vehicle is a hot topic at home and abroad. In this paper, the modeling method and autonomous control issue of hypersonic vehicles are reviewed. First, the characteristics and control difficulties of hypersonic vehicle are briefly described. Secondly, typical hypersonic vehicle models are presented. Thirdly, the research progress of modeling of hypersonic vehicles is introduced from four aspects:mechanism deduction method, CFD experimental method, model simplification technique, and model verification technique. Fourthly, the research progress of autonomous control for hypersonic vehicles are stated, including the traditional sliding mode control, highorder sliding mode control, back-stepping control, adaptive control and trajectory linearization control. The research of simulation platform for hypersonic vehicle is briefly introduced as well. In the end, some prospects and conclusions are given.

参考文献

[1] 宗群, 曾凡琳, 张希彬, 等. 高超声速飞行器建模与模型验证[M]. 北京:科学出版社, 2016. Zong Qun, Zeng Fanlin, Zhang Xibin, et al. Modeling and model validation of hypersonic vehicle[M]. Beijing:Science Press, 2016.
[2] Rodriguez A, Dickeson J, Cifdaloz O, et al. Modeling and control of sc-ramjet-powered hypersonic vehicles:Challenges, trends, and tradeoffs[C]//AIAA Guidance, Navigation and Control Conference and Exhibit. Reston:AIAA, 2008.
[3] McClinton R, Rausch V L, Shaw R J, et al. Hyper-X:Foundation for future hypersonic launch vehicles[J]. Acta Astronautica, 2005, 57(2):614-622.
[4] Fidan B, Mirmirani M, Ioannou P. Flight dynamics and control of airbreathing hypersonic vehicles:Review and new directions[C]//12th AIAA International Space Planes and Hypersonic Systems and Technol-ogies, Norfolk, Virginia, December 15-19, 2003.
[5] Hallion R. The History of Hypersonics:Or, ‘Back to the Future:Again and Again’[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January 10-13, 2005.
[6] Thompson E, Keith H, Leslie W. Faster than a speeding bullet:Guin-ness recognizes NASA Scramjet[EB/OL].[2017-03-31]. https://www.nasa.gov/home/hqnews/2005/jun/HQ_05_156_X43A_Guinness.htm.
[7] Moses P, Rausch V, Nguyen L, et al. NASA hypersonic flight demon-strators overview, status, and future plans[J]. Acta Astronautica, 2004, 55(8):619-630.
[8] Fiorentini L. Nonlinear adaptive controller design for air-breathing hy-personic vehicles[D]. Columbus:The Ohio State University, 2010.
[9] Bolender M, Doman D. A non-linear model for the longitudinal dynam-ics of a hypersonic air-breathing vehicle[C]//AIAA Guidance, Naviga-tion, and Control Conference and Exhibit, San Francisco, California, Au-gust 15-18, 2006.
[10] Bolender A, Doman B. Nonlinear longitudinal dynamical model of an air-breathing hypersonic vehicle[J]. Journal Spacecraft and Rockets, 2007, 44(2):374-386.
[11] Oppenheimer W, Doman B. A hypersonic vehicle model developed with piston theory[C]//AIAA Atmospheric Flight Mechanics Confer-ence and Exhibit, Keystone, Colorado, August 21-24, 2006.
[12] Oppenheimer M, Skujins T, Bolender M, et al. A flexible hypersonic vehicle model developed with piston theory[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit, Hilton Head, South Caroli-na, August 20-23, 2007.
[13] Oppenheime W, Doman B. Viscous effects for a hypersonic vehicle model[C]//AIAA Atmospheric Flight Mechanics Conference and Exhib-it, Honolulu, Hawaii, August 18-21, 2008.
[14] Oppenheimer W, Doman B, et al. Canard-elevon interactions on a hy-personic vehicle[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit, Honolulu, Hawaii, August 18-21, 2008.
[15] Bolender A, Oppenheimer W, Doman B. Effects of unsteady and vis-cous aerodynamics on the dynamics of a flexible air-breathing hyper-sonic vehicle[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit, Hilton Head, South Carolina, August 20-23, 2007.
[16] Bolender A, Doman B. Modeling unsteady heating effects on the struc-tural dynamics of a hypersonic vehicle[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit, Keystone, Colorado, August 21-24, 2006.
[17] Williams T, Bolender A, Doman B. An aerothermal flexible mode anal-ysis of a hypersonic vehicle[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit, Keystone, Colorado, August 21-24, 2006.
[18] Culler J, Williams T, Bolender A. Aerothermal modeling and dynamic analysis of a hypersonic vehicle[C]//AIAA Atmospheric Flight Mechan-ics Conference and Exhibit, Hilton Head, South Carolina, August 20-23, 2007.
[19] Baumann E, Bahm C, Strovers B, et al. The X-43A six degree of free-dom monte carlo analysis[C]. 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January 7-10, 2008.
[20] Zong Q, You M, Zeng F L, et al. Aeroservoelastic modeling and analy-sis of a six-DOF hypersonic flight vehicle[J]. Proceedings of the Insti-tution of Mechanical Engineers, Part G:Journal of Aerospace Engi-neering, 2016, 230(7):1240-1251.
[21] Zhang X B, Zong Q. Modeling and analysis of an air-breathing flexi-ble hypersonic vehicle[J]. Mathematical Problems in Engineering, 2014, 2014(6):759-765.
[22] Zhang X B, Zong Q, Zeng F L. Effects of aeroelastic modes on the dy-namics of a flexible hypersonic vehicle[C]//The 25th Chinese control and Decision Conference, Guiyang, July 18, 2013.
[23] 张希彬, 宗群. 考虑气动-推进-弹性耦合的高超声速飞行器面向控制建模与分析[J]. 宇航学报, 2014, 35(5):528-536. Zhang Xibin, Zong Qun. Control-oriented modeling and analysis of a hypersonic vehicle with coupled[J]. Journal of Astronautics, 2014, 35(5):528-536.
[24] 张希彬, 宗群. 面向控制的弹性体高超声速飞行器建模与分析[J]. 控制与决策, 2014, 29(7):1205-1210. Zhang Xibin, Zong Qun. Control-oriented modeling and analysis of flexible hypersonic vehicle[J]. Control and Decision, 2014, 29(7):1205-1210.
[25] Keshmiri S, Mirmirani D, Colgren R. Six-DOF modeling and simula-tion of a generic hypersonic vehicle for conceptual design studies[C]//AIAA Modeling and Simulation Technologies Conference and Exhibit, Providence, Rhode Island, August 16-19, 2004.
[26] Keshmiri S, Colgren R, Mirmirani D. Development of an aerodynamic database for a generic hypersonic air vehicle[C]//AIAA Guidance, Nav-igation, and Control Conference and Exhibit, San Francisco, Califor-nia, August 15-18, 2005.
[27] Keshmiri S, Colgren R, Mirmirani D. Modeling and simulation of a ge-neric hypersonic vehicle using merged aerodynamic models[C]//14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference, Canberra, Australia, November 6-9, 2006.
[28] Javaid H, Serghides C. Airframe-propulsion integration methodology for waverider-derived hypersonic cruise aircraft design concepts[J]. Journal of Spacecraft and Rockets, 2005, 42(4):663-671.
[29] Mirmirani D, Wu C. Modeling for control of a generic airbreathing hy-personic vehicle[C]//AIAA Guidance, Navigation, and Control Confer-ence and Exhibit, San Francisco, California, August 15-18, 2005.
[30] Clark K, Mirmirani D, Wu C, et al. An aero-propulsion integrated elastic model of a generic airbreathing hypersonic vehicle[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, Colorado, August 21-24, 2006.
[31] Clark K, Wu C, Mirmirani D. Development of an airframe-propulsion integrated generic hypersonic vehicle model[C]//44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January 9-12, 2006
[32] Wang X, Feng D, Yu Y. Modeling method and CFD simulation of a hypersonic cruise vehicle[C]//2nd IEEE Conference on Industrial Elec-tronics and Applications. Harbin:IEEE, 2007:1346-1349.
[33] Frendreis G, Skujins T, Cesnik E. Six-degree-of-freedom simulation of hypersonic vehicles[C]//AIAA Atmospheric Flight Mechanics Con-ference, Chicago, Illinois, August 10-13, 2009.
[34] Frendreis G, Cesnik E. 3D simulation of flexible hypersonic vehicles[C]//AIAA Atmospheric Flight Mechanics Conference, Toronto, Ontar-io, Canada, August 2-5, 2010.
[35] Lanczos C. An iteration method for the solution of the eigenvalue prob-lem of linear differential and intergral operators[J]. Journal of Re-search of the National Institute of Standards & Technology, 1950, 45(45):255-282.
[36] Arnoldi E. The principle of minimized iterations in the solution of the matrix eigenvalue problem[J]. Quarterly of Applied Mathematics, 1951, 9(1):17-29.
[37] Salimbahrami B, Lohmann B. Modified lanczos algorithm in model or-der reduction of MIMO linear systems[R/OL].[2017-03-31]. http://www.rt.mw.tum.de/fileadmin/w00bhf/www/publikationen/forschungsberi-chte/FB_2002_Salimbahrami_LanczosMIMO.pdf.
[38] Salimbahrami B, Lohmann B, Bechtold T. Two-sided arnoldi in order reduction of large scale MIMO systems[R/OL].[2017-03-31]. http://www.rt.mw.tum.de/fileadmin/w00bhf/www/publikationen/forschungsberi-chte/FB_2002_Salimbahrami_techrep_3.pdf?origin=publication_detail.
[39] Moore B. Principal component analysis in linear systems:Controllabili-ty, observability, and model reduction[J]. IEEE Transactions on Auto-matic Control, 1981, 26(1):17-32.
[40] Gugercin S, Antoulas C. A survey of model reduction by balanced truncation and some new results[J]. International Journal of Control, 2004, 77(8):748-766.
[41] 尤明, 宗群, 曾凡琳, 等. 基于平衡截断方法的高超声速飞行器模型降阶[J]. 控制理论与应用, 2014, 31(6):795-800. You Ming, Zong Qun, Zeng Fanlin, et al. Model order reduction for hypersonic vehicle based on balanced truncate method[J]. Control Theory and Applications, 2014, 31(6):795-800.
[42] Williams P. A Monte Carlo dispersion analysis of the X-33 simulation software[C]//AIAA Atmospheric Flight Mechanics Conference, Montre-al, Canada, August 6-9, 2001.
[43] Baumann B, Richard M. The X-43A six-degree of freedom Monte Car-lo analysis[C]//46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January 7-10, 2008.
[44] 吴静, 吴晓燕, 陈永兴, 等. 基于改进灰色关联分析的仿真模型验证方法[J]. 系统工程与电子技术, 2010, 32(8):1677-1679. Wu Jing, Wu Xiaoyan, Chen Yongxing, et al. Validation of simulation models based on improved grey relational analysis[J]. Systems Engineering and Electronics. 2010, 32(8):1677-1679.
[45] 王曙钊, 刘兴堂, 段锁力. 利用灰色关联度理论对仿真模型的评估研究[J]. 空军工程大学学报(自然科学版), 2007, 8(1):73-76. Wang Shuzhao, Liu Xingtang, Duan Suoli. Research on simulation model evaluation using grey correlation degree[J]. Journal of Air Force Engineering University(Natural Science Edition), 2007, 8(1):73-76.
[46] Hills R, Leslie H. Statistical validation of engineering and scientific models:Validation experiments to application[R]. Albuquerque, NM:Sandia National Labs, 2003.
[47] 李鹤, 吕岩, 杨明权. 基于频谱分析的飞行模拟器飞行性能验证[J]. 军械工程学院学报, 2008, 20(6):33-37. Li He, Lv Yan, Yang Mingquan. Validation of flight simulator's flight perfbrmance based on spectrum anaIysis[J]. Journal of Ordnance Engineering College, 2008, 20(6):33-37.
[48] Torrez S, Driscoll J, Dalle D. Hypersonic vehicle thrust sensitivity to angle of attack and mach number[C]//AIAA Atmospheric Flight Me-chanics Conference, Chicago, Illinois, August 10-13, 2009..
[49] Brian L, Dimitri M. Parameter sensitivity analysis for hypersonic vis-cous flow using a discrete adjoint approach[C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, January 4-7, 2010.
[50] Oberguggenberger M, King J. Classical and imprecise probability meth-ods for sensitivity analysis in engineering:A case study[J]. Internation-al Journal of Approximate Reasoning, 2009, 50(4):680-693.
[51] Shao X L, Wang H L. Sliding mode based trajectory linearization con-trol for hypersonic reentry vehicle via extended disturbance observer[J]. Isa Transactions, 2014, 53(6):1771-1786.
[52] Sun H B, Li S, Sun C. Finite time integral sliding mode control of hy-personic vehicles[J]. Nonlinear Dynamics, 2013, 73(1/2):229-244.
[53] Hu X, Wu L G, Hu C, et al. Adaptive sliding mode tracking control for a flexible air-breathing hypersonic vehicle[J]. Journal of the Frank-lin Institute, 2012, 349(2):559-577.
[54] Liu H, Zong Q, Tian B L, et al. Hypersonic Vehicle control based on Integral Sliding Mode Method[C]//Proceeding of the 10th World Con-gress on Intelligent Control and Automation. Beijing, China, July 6-8, 2012.
[55] Tournes C, Hanks G. Hypersonic glider control using higher order slid-ing mode control[C]//IEEE SoutheastCon 2008. Huntsville:IEEE, 2008:274-279.
[56] Zong Q, Wang J, Tao Y. Adaptive high-order dynamic sliding mode control for a flexible air-breathing hypersonic vehicle[J]. International Journal of Robust and Nonlinear Control, 2013, 23(15):1718-1736.
[57] Wang J, Zong Q, Tian B, et al. Flight control for a flexible air-breath-ing hypersonic vehicle based on quasi-continuous high-order sliding mode[J]. Journal of Systems Engineering and Electronics, 2013, 24(2):288-295.
[58] Zong Q, Wang J, Tian B L, et al. Quasi-continuous high-order sliding mode controller and observer design for flexible hypersonic vehicle[J]. Aerospace Science and Technology, 2013, 27(1):127-137.
[59] Tian B L, Fan W, Zong Q, et al. Adaptive high order sliding mode controller design for hypersonic vehicle with flexible body dynamics[J]. Mathematical Problems in Engineering, 2013, doi:10.1155/2013/357685.
[60] Wang L, Sheng Y Z, Liu X D, et al. High-order sliding mode attitude controller design for reentry flight[J]. Systems Engineering and Elec-tronics, 2014, 25(5):848-858.
[61] Zhang Y Y, Li R F, Xue T, et al. An analysis of the stability and chat-tering reduction of high-order sliding mode tracking control for a hy-personic vehicle[J]. Information Sciences, 2016, 348:25-48.
[62] Zhang Y, Li R, Xue T, et al. Exponential sliding mode tracking con-trol via back-stepping approach for a hypersonic vehicle with mis-matched uncertainty[J]. Journal of the Franklin Institute, 2016, 353(10):2319-2343.
[63] Shao X L, Wang H L. Back-stepping robust trajectory linearization control for hypersonic reentry vehicle via novel tracking differentiator[J]. Journal of the Franklin Institute, 2016, 353(9):1957-1984.
[64] Wang P F, Wang J, Bu X W, et al. Adaptive fuzzy back-stepping con-trol of a flexible air-breathing hypersonic vehicle subject to input con-straints[J]. Journal of Intelligent & Robotic Systems, 2016, doi:10.1007/s10846-016-0438-9.
[65] Zong Q, Ji Y, Zeng F, et al. Output feedback back-stepping control for a generic hypersonic vehicle via small-gain theorem[J]. Aerospace Science and Technology, 2012, 23(1):409-417.
[66] Fiorentini L, Serrani A. Adaptive restricted trajectory tracking for a non-minimum phase hypersonic vehicle model[J]. Automatica, 2012, 48(7):1248-1261.
[67] Butt W, Yan L, Kendrick A. Adaptive dynamic surface control of a hy-personic flight vehicle with improved tracking[J]. Asian Journal of Control, 2013, 15(2):594-605.
[68] Zong Q, Wang F, Tian B, et al. Robust adaptive dynamic surface con-trol design for a flexible air-breathing hypersonic vehicle with input constraints and uncertainty[J]. Nonlinear Dynamics, 2014, 78(1):289-315.
[69] Banerjee S, Wang Z, Baur B, et al. L1 adaptive control augmentation for the longitudinal dynamics of a hypersonic glider[J]. Journal of Guidance Control & Dynamics, 2016, 39(2):275-291.
[70] Prime Z, Doolan C, Cazzolato B. Longitudinal L1 adaptive control of a hypersonic re-entry experiment[C]//15th Australian International Aero-space Congress (AIAC15), Australian International Aerospace Con-gress. Melbourne:VIC, 2013:717-726.
[71] Wiese D, Annaswamy A, Muse J, et al. Adaptive control of a generic hypersonic vehicle[R/OL].[2017-03-31]. http://dspace.mit.edu/bit-stream/handle/1721.1/101661/WIESE_GNC_2013_PREPRINT.pdf;jsessionid=D448EEA0D9B361CA72AFB5E020DCC0A6?sequence=1.
[72] He J J, Qi R Y, Jiang B, et al. Adaptive output feedback fault-toler-ant control design for hypersonic flight vehicles[J]. Journal of the Franklin Institute, 2015, 352(5):1811-1835.
[73] Jiao X, Jiang J. Design of adaptive switching control for hypersonic air-craft[J]. Advances in Mechanical Engineering, 2015, 7(10):1-10.
[74] Shao X, Wang H, Zhang H P. Enhanced trajectory linearization con-trol based advanced guidance and control for hypersonic reentry vehi-cle with multiple disturbances[J]. Aerospace Science & Technology, 2015, 46:523-536.
[75] Pu Z Q, Tan X, Fan G, et al. Uncertainty analysis and robust trajecto-ry linearization control of a flexible air-breathing hypersonic vehicle[J]. Acta Astronautica, 2014, 101(1):16-32.
[76] Bu X, Wu X, Wei D, et al. Neural-approximation-based robust adap-tive control of flexible air-breathing hypersonic vehicles with paramet-ric uncertainties and control input constraints[J]. Information Scienc-es, 2016, 346(C):29-43.
[77] Xu B. Robust adaptive neural control of flexible hypersonic flight vehi-cle with dead-zone input nonlinearity[J]. Nonlinear Dynamics, 2015, 80(3):1509.
[78] Adami T, Zhu J, Bolender M, et al. Flight control of hypersonic scram-jet vehicles using a differential algebraic approach[C]//AIAA Guid-ance, Navigation, and Control Conference and Exhibit, Keystone, Colo-rado, August 21-24, 2006.
[79] 朱亮, 姜长生. 基于非线性干扰观测器的空天飞行器轨迹线性化控制[J]. 南京航空航天大学学报, 2007, 39(4):491-495. Zhu Liang, Jiang Changsheng. Nonlinear disturbance observerenhanced trajectory linearization control for aerospace vehicle[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2007, 39(4):491-495.
[80] 朱亮, 姜长生, 薛雅丽. 基于单隐层神经网络的空天飞行器鲁棒自适应轨迹线性化控制[J]. 兵工学报, 2008, 29(1):52-56. Zhu Liang, Jiang Changsheng, Xue Yali. Robust adaptive trajectory linearization control for aerospace vehicle using single hidden layer neural networks[J]. Acta Armamentarii, 2008, 29(1):52-56.
[81] Shao X L, Wang H L. Active disturbance rejection based trajectory lin-earization control for hypersonic reentry vehicle with bounded uncer-tainties[J]. Isa Transactions, 2015, 54:27.
[82] Shy K S, Hageman J J, Le J H. The role of aircraft simulation in im-proving flight safety through control training[R/OL].[2017-03-31]. https://www.nasa.gov/centers/dryden/pdf/88743main_H-2501.pdf
[83] Crespo L G, Kenny S P. Matlab stability and control toolbox:trim and static stability module[R/OL].[2017-03-31]. https://ntrs.nasa.gov/ar-chive/nasa/casi.ntrs.nasa.gov/20070006853.pdf.
[84] Prevot T, Smith N, Palmer E, et al. The airspace operations laborato-ry (AOL) at NASA ames research center[C]//AIAA Modeling and Simu-lation Technologies Conference and Exhibit, Keystone, Colorado, Au-gust 21-24, 2006.
[85] Cotting M C, McCue L. The instructional design and redesign of an un-dergraduate-level, simulator-based course on ‘flight test techniques’[R/OL].[2017-03-31]. http://icee.usm.edu/ICEE/conferences/asee2007/papers/93_THE_INSTRUCTIONAL_DESIGN_AND_REDESIGN_OF.pdf.
[86] 郝秀, 宗群, 李庆鑫, 等. 基于dSPACE的高超声速飞行器实时仿真平台[J]. 计算机应用与软件, 2014(2):52-54. Hao Xiu, Zong Qun, Li Qingxin, et al. A real-time simulation platform for hypersonic vehicle based on dSpace[J]. Computer Applications and Software, 2014(2):52-54.
[87] 宗群, 廖海林, 吕力, 等. 基于分布式架构的临近空间飞行器视景仿真方法:201110299796[P]. 2012-04-25. Zong Qun, Liao Hailin, Lü Li, et al. Scene simulation method of near space vehicle based on distributed architecture:201110299796[P]. 2012-4-25.
[88] 宗群, 董琦, 徐锐, 等. 可重复使用运载器再入制导与控制系统性能评估方法:201410415835.3[P]. 2014-11-19. Zong Qun, Dong Qi, Xu Rui. Performance evaluation method of reentry guidance and control system for reusable launch vehicle:201410415835.3[P]. 2014-11-19.
[89] 宗群, 徐锐, 李庆鑫, 等. 基于OGRE的无人机全轨迹实时视景仿真系统[J]. 控制工程, 2015(1):1-7. Zong Qun, Xu Rui, Li Qingxin. A real time visual simulation system for unmanned aerial vehicle[J]. Control Engineering of China, 2015(1):1-7.
文章导航

/