研究论文

木材趋磁性仿生矿化形成及微波吸收性能

  • 王汉伟 ,
  • 孙庆丰 ,
  • 盛成皿 ,
  • 杨宁
展开
  • 1. 浙江农林大学工程学院, 杭州 311300;
    2. 浙江省木材科学与技术重点实验室, 杭州 311300
王汉伟,硕士研究生,研究方向为木材仿生趋磁性功能材料制备,电子信箱:18868196590@163.com

收稿日期: 2017-01-26

  修回日期: 2017-10-20

  网络出版日期: 2017-11-29

基金资助

浙江省自然科学基金重点项目(LZ15C160002);浙江农林大学人才启动项目(2014FR077);浙江省新苗人才计划项目(2017R412040)

Preparation of the magnetotactic wood through the biomimetic mineralization for application in electromagnetic wave absorption

  • WANG Hanwei ,
  • SUN Qingfeng ,
  • SHENG Chengmin ,
  • YANG Ning
Expand
  • 1. School of Engineering, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China;
    2. Key Laboratory of Wood Science and Technology of Zhejiang Province, Hangzhou 311300, China

Received date: 2017-01-26

  Revised date: 2017-10-20

  Online published: 2017-11-29

摘要

依据仿生矿化原理,以天冬氨酸为生物分子诱导剂,通过低温溶剂热法在木材表面沉积MnFe2O4晶体的方式制备趋磁性木材样品,并采用X射线衍射(XRD)、扫描电子显微镜(SEM)、傅里叶变换红外光谱仪(FTIR)、振动磁强计(VSM)和矢量网格(VNA)等方法对试样进行了表征分析。结果显示,在低温碱性的溶剂热矿化条件下,磁性MnFe2O4晶体在天冬氨酸的诱导作用下可负载于木材表面形成趋磁性木材;趋磁性木材试样的反射损耗(RL)曲线最小值(-12 dB)出现在频率15.52 GHz时,并且在频率14~17 GHz范围内,试样的RL值小于-9 dB,表明趋磁性木材具有良好的微波吸收性能,是一种优良的防电磁污染的吸波复合材料。

本文引用格式

王汉伟 , 孙庆丰 , 盛成皿 , 杨宁 . 木材趋磁性仿生矿化形成及微波吸收性能[J]. 科技导报, 2017 , 35(22) : 71 -76 . DOI: 10.3981/j.issn.1000-7857.2017.22.009

Abstract

Based on the principle of the biomimetic mineralization and with the aspartic acid as the biomolecule inducer, the magnetotactic wood is prepared through the deposition of the MnFe2O4 crystal on the wood surface via the solvothermal method at low temperature. The asprepared wood is characterized by the X-ray diffraction (XRD), the scanning electron microscopy (SEM), the Fourier transform infrared spectroscopy (FT-IR), the vibrating sample magnetometer (VSM) and the vector network analysis (VNA). The results show that the magnetic MnFe2O4 could be deposited on the wood surface to form the magnetotactic wood induced by the aspartic acid under the alkaline solvothermal mineralization at low temperature. A minimum reflection loss of the magnetotactic wood is-12 dB at 15.52 GHz. Simultaneously, the RL is below-12 dB ranging from 14 to 17 GHz. Therefore, the magnetotactic wood would find a great potential application for preventing the indoor electromagnetic wave pollution.

参考文献

[1] 李坚. 木材科学[M]. 北京:高等教育出版社, 2002. Li Jian. Wood science[M]. Beijing:Higher Education Press, 2002.
[2] 李坚. 木材的生态学属性——木材是绿色环境人体健康的贡献者[J]. 东北林业大学学报, 2010, 38(5):1-8. Li Jian. Ecological properties of wood:Wood as the contributor to the green environment and human health[J]. Journal of Northeast Forestry University, 2010, 38(5):1-8.
[3] 刘一星, 于海鹏, 赵荣军. 木质环境学[M].北京:科学出版社, 2007. Liu Yixing, Yu Haipeng, Zhao Rongjun. Science of wooden environment[M]. Beijing:Higher Education Press, 2007.
[4] Oka H, Hojo A, Seki K, et al. Wood construction and magnetic characteristics of impregnated type magnetic wood[J]. Journal of Magnetism and Magnetic Materials, 2002, 239(1-3):617-619.
[5] Oka H, Hojo A, Osada H, et al. Manufacturing methods and magnetic characteristics of magnetic wood[J]. Journal of Magnetism and Magnetic Materials, 2004, 272(3):2332-2334.
[6] 房岩, 孙刚, 丛茜, 等. 仿生材料学研究进展[J]. 农业机械学报, 2006, 37(11):163-167. Fang Yan, Sun Gang, Cong Qian, et al. Advances in researches on biomimetic materials[J]. Transactions of The Chinese Society of Agricultural Machinery. 2006, 37(11):163-167.
[7] 漆超, 朱英杰, 吴进, 等. 磷酸钙纳米材料的制备, 性能及应用[J]. 科技导报, 2015, 33(4):111-119. Qi Chao, Zhu Yingjie, Wu Jin, et al. Preparation, properties and applications of calcium phosphate nanostructured materials[J]. Science & Technology Review, 2015, 33(4):111-119.
[8] Gu J, Zhang W, Su H, et al. Morphology genetic materials templated from natural species[J]. Advanced Materials, 2015, 27(3):464-478.
[9] Sun Y, Sills R B, Hu X, et al. A bamboo-Inspired nanostructure design for flexible, foldable, and twistable energy storage devices[J]. Nano Letters, 2015, 15(6):3899-3906.
[10] Xu B, Hong C, Zhang X, et al. Nanostructured hybrid carbon nanotube/ultrahigh-temperature ceramic heterostructures:Microstructure evolution and forming mechanism[J]. Journal of The American Ceramic Society, 2015, 98(12):3699-3705.
[11] Wegst U G, Bai H, Saiz E, et al. Bioinspired structural materials[J]. Nature Materials, 2015, 14(1):23-36.
[12] Wan S, Li Y, Peng J, et al. Synergistic toughening of graphene oxidemolybdenum disulfide-thermoplastic polyurethane ternary artificial nacre[J]. ACS Nano, 2015, 9(1):708-714.
[13] Ferrand H, Bouville F, Niebel T, et al. Magnetically assisted slip casting of bioinspired heterogeneous composites[J]. Nature Materials, 2015, 14(11):1172-1179.
[14] Rising A, Johansson J. Toward spinning artificial spider silk[J]. Nature Chemical Biology, 2015, 11(5):309-315.
[15] Blakemore R. Magnetotactic bacteria[J]. Science, 1975, 190(4212):377-379.
[16] Sun G, Dong B, Cao M, et al. Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption[J]. Chemistry of Materials, 2011, 23(6):1587-1593.
[17] Wang H, Yao Q, Wang C, et al. A simple, one-step hydrothermal approach to durable and robust superparamagnetic, superhydrophobic and electromagnetic wave-absorbing wood[J]. Scientific Reports, 2016, 6:35549.
[18] Wang H, Wang C, Xiong Y, et al. Solvothermal fabrication and growth behavior study of spherical MnFe2O4 through a bottom-up method on wood substrate with effective microwave absorption[J]. RSC Advances, 2017, 7(40):24764-24770.
[19] 李坚, 吴玉章, 马岩. 功能性木材[M]. 北京:科学出版社, 2011. Li Jian, Wu Yuzhang, Ma Yan. Functional wood[M]. Beijing:Science Press. 2011.
文章导航

/