[1] Porath J, Carlsson J, Olsson I, et al. Metal chelate affinity chromatography, a new approach to protein fractionation[J]. Nature, 1975, 258(5536):598-599.
[2] Lònnerdal B, Carlsson J, Porath J. Isolation of lactoferrin from human milk by metal-chelate affinity chromatography[J]. FEBS Letters, 1977, 75(1):89-92.
[3] Edy V G, Billiau A, Somer P D. Purification of human fibroblast interferon by zinc chelate affinity chromatography[J]. The Journal of Biological Chemistry, 1977, 252(17):5934-5935.
[4] Porath J, Olin B. Immobilized metal ion affinity adsorption and immobilized metal ion affinity chromatography of biomaterials. Serum protein affinities for gel-immobilized iron and nickel ions[J]. Biochemistry, 1983, 22(7):1621-1630.
[5] Andersson L. Fractionation of human serum proteins by immobilized metal affinity chromatography[J]. Journal of Chromatography, 1984, 315(12):167-174.
[6] Ramadan N, Porath J. Fe3+-Hydroxamate as immobilized metal affinityadsorbent for protein chromatography[J]. Journal of Chromatography, 1985, 321(1):93-104.
[7] Andersson L, Porath J. Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography[J]. Analytical Biochemistry, 1986, 154(1):250-254.
[8] Muszyńska G, Andersson L, Porath J. Selective adsorption of phosphoproteins on gel-immobilized ferric chelate[J]. Biochemistry, 1986, 25(22):6850-6853.
[9] Figueroa A, Corradini C, Feibush B, et al. High-performance immobilized-metal affinity chromatography of proteins on iminodiacetic acid silica-based bonded phases[J]. Journal of Chromatography, 1986, 371(371):335-352.
[10] Andersson L, Sulkowski E, Porath J. Facile resolution of α-fetoproteins and serum albumins by immobilized metal affinity chromatography[J]. Cancer Research, 1987, 47(14):3624-3626.
[11] Hemdan E S, Zhao Y J, Sulkowski E, et al. Surface topography of histidine residues:A facile probe by immobilized metal ion affinity chromatography[J]. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86(6):1811-1815.
[12] Schunter A J, Yue X, Hummon A B. Phosphoproteomics of colon can-cer metastasis:Comparative mass spectrometric analysis of the isogenic primary and metastatic cell lines SW480 and SW620[J]. Analytical and Bioanalytical Chemistry, 2017, 409(7):1749-1763.
[13] He Z, Tan J S, Lai O M, et al. Optimization of conditions for the single step IMAC purification of miraculin from Synsepalum dulcificum[J]. Food Chemistry, 2015, 181:19-24.
[14] Kennedy J J, Yan P, Zhao L, et al. Immobilized metal affinity chromatography coupled to multiple reaction monitoring enables reproducible quantification of phospho-signaling[J]. Molecular & Cellular Proteomics, 2016, 15(2):726-739.
[15] Kowalska E, Bartnicki F, Pels K, et al. The impact of immobilized metal affinity chromatography (IMAC) resins on DNA aptamer selection[J]. Analytical and Bioanalytical Chemistry, 2014, 406(22):5495-5499.
[16] 杨柳. 钴螯合亲和介质的制备及其在六聚组氨酸融合蛋白纯化中的应用[D]. 西安:西北大学, 2008. Yang Liu. Preparation of cobalt chelate affinity mediums and their application in purification of 6×His-tagged proteins[D]. Xi'an:Northwest University, 2008.
[17] Vijayalakshmi M A. Pseudobiospecific ligand affinity chromatography[J]. Trends in Biotechnology, 1989, 7(3):71-76.
[18] 文禹撷, 邹少兰, 林东强, 等. 双水相亲和萃取法从豆壳中分离过氧化物酶[J]. 食品科学, 2004, 25(7):93-96. Wen Yuxie, Zou Shaolan, Lin Dongqiang, et al. Affinity partition of soybean hull peroxidase in aqueous two-phase systems[J]. Food Science, 2004, 25(7):93-96.
[19] Anspach F B. Silica-based metal chelate affinity sorbents. I. Preparation and characterization of iminodiacetic acid affinity sorbents prepared via different immobilization techniques[J]. Journal of Chromatography A, 1994, 672:35-49.
[20] 李蓉, 邸泽梅, 陈国亮. 金属螯合亲和色谱中固定金属与蛋白质的作用[J]. 分析化学, 2002, 30(5):552-555. Li Rong, Di Zemei, Chen Guoliang. Interaction between immobilized metal and protein in metal chelate affinity chromatography[J]. Chinese Journal of Analytical Chemistry, 2002, 30(5):552-555.
[21] 李蓉, 陈国亮, 赵文明. 固定金属离子亲和色谱-蛋白质分离方法、原理和应用[J]. 化学通报, 2005, 68(5):352-360. Li Rong, Chen Guoliang, Zhao Wenming. Immobilized metal ion affinity chromatography——methods, principles,characteristics and applications for protein separation[J]. Chemistry Bulletin, 2005, 68(5):352-360.
[22] 白春礼. 纳米科技及其发展前景[J]. 科学通报, 2001, 46:89-92. Bai Chunli. Nanometer science and technology and its development prospect[J]. Science Bulletin. 2001, 46:89-92.
[23] Bond A E, Row P E, Dudley E. Post-translation modification of proteins; methodologies and applications in plant sciences[J]. Phytochemistry, 2011, 72(10):975-996.
[24] Dai J, Wang M, Liu H. Highly selective enrichment of phosphopeptides using Zr4+-immobilized Titania nanoparticles[J]. Talanta, 2017, 164:222-227.
[25] Harivardhan R L, Arias J L, Julien N, et al. Magnetic nanoparticles:Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications[J]. Chemical Reviews, 2012, 112(11):5818-5878.
[26] Rashid Z, Ghahremanzadeh R, Nejadmoghaddam M R, et al. Nickelsalen supported paramagnetic nanoparticles for 6-His-target recombinant protein affinity purification[J]. Journal of Chromatography A, 2017, 1490:47-53.
[27] Chen Y, Xiong Z, Peng L, et al. Facile preparation of core-shell magnetic metal-organic framework nanoparticles for the selective capture of phosphopeptides[J]. ACS Applied Materials & Interfaces, 2015, 7(30):16338-16347.
[28] Ma X, Ding C, Yao X, et al. Ethylene glycol assisted preparation of Ti4+-modified polydopamine coated magnetic particles with rough surface for capture of phosphorylated proteins[J]. Analytica Chimica Acta, 2016, 929:23-30.
[29] Piovesana S, Capriotti A L, Cavaliere C, et al. Phosphopeptide enrichment:Development of magnetic solid phase extraction method based on polydopamine coating and Ti4+-IMAC[J]. Analytica Chimica Acta, 2016, 909:67-74.
[30] Ge R, Shan W. Bacterial phosphoproteomic analysis reveals the correlation between protein phosphorylation and bacterial pathogenicity[J]. Genomics, Proteomics & Bioinformatics, 2011, 9(4/5):119-127.
[31] Zhang L, Liang Z, Zhang L, et al. Facile synthesis of gallium ions immobilized and adenosine functionalized magnetic nanoparticles with high selectivity for multi-phosphopeptides[J]. Analytica Chimica Acta, 2015, 900:46-55.
[32] Gladilovich V, Greifenhagen U, Sukhodolov N, et al. Immobilized metal affinity chromatography on collapsed Langmuir-Blodgett iron (Ⅲ) stearate films and iron(Ⅲ) oxide nanoparticles for bottom-up phosphoproteomics[J]. Journal of Chromatography A, 2016, 1443:181-190.
[33] Songa E A, Okonkwo J O. Recent approaches to improving selectivity and sensitivity of enzyme-based biosensors for organophosphorus pesticides:A review[J]. Talanta, 2016, 155:289-304.
[34] Jiang L, Huang T, Feng S, et al. Zirconium(IV) functionalized magnetic nanocomposites for extraction of organophosphorus pesticides from environmental water samples[J]. Journal of Chromatography A, 2016, 1456:49-57.
[35] Sun X, Liu X, Feng J, et al. Hydrophilic Nb5+-immobilized magnetic core-shell microsphere-A novel immobilized metal ion affinity chromatography material for highly selective enrichment of phosphopeptides[J]. Analytica Chimica Acta, 2015, 880:67-76.
[36] Salimi K, Usta D D, Koçer Ì, et al. Highly selective magnetic affinity purification of histidine-tagged proteins by Ni2+ carrying monodisperse composite microspheres[J]. RSC Advances, 2017, 7(14):8718-8726.
[37] Bo C, Wang C, Wei Y. Novel bis(5-methyltetrazolium)amine ligandbonded stationary phase with reduced leakage of metal ions in immobilized metal affinity chromatography of proteins[J]. Analytical and Bioanalytical Chemistry, 2016, 408(27):7595-7605.
[38] Britton J, Dyer R P, Majumdar S, et al. Ten-minute protein purification and surface tethering for continuous-flow biocatalysis[J]. Angewandte Chemie International, 2017, 56(9):1-6.
[39] Qin Q, Wang B, Chang M, et al. Highly efficient solid-phase derivatization of sugar phosphates with titanium-immobilized hydrophilic polydopamine-coated silica[J]. Journal of Chromatography A, 2016, 1457:125-133.
[40] Li S, Wang L, Yang J, et al. Affinity purification of metalloprotease from marine bacterium using immobilized metal affinity chromatography[J]. Journal of Separation Science, 2016, 39(11):2050-2056.
[41] Zhao L, Zhang J, Huang Y, et al. Efficient fabrication of high-capacity immobilized metal ion affinity chromatographic media:The role of the dextran-grafting process and its manipulation[J]. Journal of Separa-tion Science, 2016, 39(6):1130-1136.
[42] Mourão C A, Carmignotto G P, Bueno S M A. Separation of human IgG fragments using copper, nickel, zinc, and cobalt chelated to CMAsp-agarose by positive and negative chromatography[J]. Journal of Chromatography B, 2016, (1017/1018):163-173.
[43] Klement E, Raffai T, Medzihradszky K F. Immobilized metal affinity chromatography optimized for the analysis of extracellular phosphorylation[J]. Proteomics, 2016, 16(13):1858-1862.
[44] Yue X, Schunter A, Hummon A B. Comparing multi-step IMAC and multi-step TiO2 methods for phosphopeptide enrichment[J]. Analytical Chemistry, 2015, 87(17):8837-8844.
[45] Sun Z Y, Hamilton K L, Reardon K F. Evaluation of quantitative performance of sequential immobilized metal affinity chromatographic enrichment for phosphopeptides[J]. Analytical Biochemistry, 2014, 445(1):30-37.
[46] McCarthy P, Chattopadhyay M, Millhauser G L, et al. Nanoengineered analytical immobilized metal affinity chromatography stationary phase by atom transfer radical polymerization:Separation of synthetic prion peptides[J]. Analytical Biochemistry, 2007, 366(1):1-8.
[47] Ruprecht B, Koch H, Medard G, et al. Comprehensive and reproducible phosphopeptide enrichment using iron immobilized metal ion affinity chromatography (Fe-IMAC) columns[J]. Molecular & Cellular Proteomics, 2015, 14(1):205-215.
[48] Zhu F F, Trinidad J C, Clemmer D E. Glycopeptide site heterogeneity and structural diversity determined by combined lectin affinity chromatography/IMS/CID/MS techniques[J]. Journal of the American Society for Mass Spectrometry, 2015, 26(7):1092-1102.
[49] He X M, Zhu G T, Zhu Y Y, et al. Facile preparation of biocompatible sulfhydryl cotton fiber-based sorbents by "Thiol-ene" click chemistry for biological analysis[J]. ACS Applied Materials & Interfaces, 2014, 6(20):17857-17864.
[50] He X M, Chen X, Zhu G T, et al. Hydrophilic carboxyl cotton chelator for titanium(IV) immobilization and its application as novel fibrous sorbent for rapid enrichment of phosphopeptides[J]. ACS Applied Materials & Interfaces, 2015, 7(31):17356-17362.
[51] He X M, Zhu G T, Lu W, et al. Nickel(Ⅱ)-immobilized sulfhydryl cotton fiber for selective binding and rapid separation of histidine-tagged proteins[J]. Journal of Chromatography A, 2015, 1405:188-192.
[52] He X M, Chen X, Yuan B F, et al. Graft modification of cotton with phosphate group and its application to the enrichment of phosphopeptides[J]. Journal of Chromatography A, 2017, 1484:49-57.
[53] He X M, Yuan B F, Feng Y Q. Facial synthesis of nickel(Ⅱ)-immobilized carboxyl cotton chelator for purification of histidine-tagged proteins[J]. Journal of Chromatography B, 2017, 1043:122-127.
[54] Yang K, Zhang L, Liang Z, et al. Protein-imprinted materials:Rational design, application and challenges. Protein-imprinted materials:Rational design, application and challenges[J]. Analytical and Bioanalytical Chemistry, 2012, 403(8):2173-2183.
[55] Li S, Yang K, Liu J, et al. Surface-imprinted nanoparticles prepared with a his-tag-anchored epitope as the template[J]. Analytical Chemistry, 2015, 87(9):4617-4620.
[56] Li Q, Yang K, Li S, et al. Preparation of surface imprinted core-shell particles via a metal chelating strategy:specific recognition of porcine serum albumin[J]. Microchimica Acta, 2016, 183(1):345-352.
[57] Li S, Yang K, Zhao B, et al. Epitope imprinting enhanced IMAC (EⅡMAC) for highly selective purification of His-tagged protein[J]. Journal of Materials Chemistry B, 2016, 4(11):1960-1967.
[58] Ye Q, Zhou F, Liu W. Bioinspired catecholic chemistry for surface modification[J]. Chemical Society Reviews, 2011, 40:4244-4258.
[59] Yang Y, Zheng Z, Deng C, et al. Hydrophilic polydopamine-coated grapheme for metal ion immobilization as a novel immobilized metal ion affinity chromatography platform for phosphoproteome analysis[J]. Analytical Chemistry, 2013, 85(18):8483-8487.
[60] Shi C, Lin Q, Deng C. Preparation of on-plate immobilized metal ion affinity chromatography platform via dopamine chemistry for highly selective isolation of phosphopeptides with matrix assisted laser desorption/ionization mass spectrometry analysis[J]. Talanta, 2015, 135:81-86.
[61] Shi C, Deng C. Immobilized metal ion affinity chromatography ZipTip pipette tip with polydopamine modification and Ti4+ immobilization for selective enrichment and isolation of phosphopeptides[J]. Talanta, 2015, 143:464-468.
[62] Jiang B, Wu Q, Deng N, et al. Hydrophilic GO/Fe3O4/Au/PEG nanocomposites for highly selective enrichment of glycopeptides[J]. Nanoscale, 2016, 8(9):4894-4897.
[63] Zhang Q, Zhang Q, Xiong Z, et al. Facile preparation of mesoporous carbon-silica-coated grapheme for the selective enrichment of endogenous peptides[J]. Talanta, 2016, 146:272-278.
[64] Lin H, Deng C. Development of immobilized Sn4+ affinity chromatography material for highly selective enrichment of phosphopeptides[J]. Proteomics, 2016, 16(21):2733-2741.
[65] Han B, Zhao C, Yin J, et al. High performance aptamer affinity chromatography for single-step selective extraction and screening of basic protein lysozyme[J]. Journal of Chromatography B, 2012, 903(903):112-117.
[66] Han B, Wang P, Zhu G, et al. Microchip free flow isoelectric focusing for protein prefractionation using monolith with immobilized pH gradient[J]. Journal of Separation Science, 2009, 32(8):1211-1215.
[67] Wu C, Liang Y, Yang K, et al. Clickable periodic mesoporous organosilica monolith for highly efficient capillary chromatographic separation[J]. Analytical Chemistry, 2016, 88(3):1521-1525.
[68] Araya-Farias M, Dziomba S, Carbonnier B, et al. A lab-on-a-chip for monolith-based preconcentration and electrophoresis separation of phosphopeptides[J]. Analyst, 2017, 142(3):485-494.
[69] Zhang H, Ou J, Yao Y, et al. Facile preparation of titanium(IV)-immobilized hierarchically porous hybrid monoliths[J]. Analytical Chemistry, 2017, 89(8):4655-4662.
[70] Li Y, Bao T, Chen Z. Polydopamine-assisted immobilization of zeolitic imidazolate framework-8 for open-tubular capillary electrochromatography[J]. Journal of Separation Science, 2017, 40(4):954-961.
[71] Manna K, Zhang T, Lin W. ChemInform abstract:Postsynthetic metalation of bipyridyl-containing metal-organic frameworks for highly efficient catalytic organic transformations[J]. Journal of the American Chemical Society, 2014, 136(18):6566-6569.
[72] Wang H, Jiao F, Gao F, et al. Titanium (IV) ion-modified covalent organic frameworks for specific enrichment of phosphopeptieds[J]. Talanta, 2017, 166:133-140.
[73] Peng J, Zhang H, Li X, et al. Dual-metal centered zirconium-organic framework:A metal-affinity probe for highly specific interaction with phosphopeptides[J]. ACS Applied Materials & Interfaces, 2016, 8(51):35012-35020.
[74] Karakus C, Uslu M, Yazici D, et al. Evaluation of immobilized metal affinity chromatography kits for the purification of histidine-tagged recombinant CagA protein[J]. Journal of Chromatography B, 2016, 1021:182-187.
[75] Ding S J, Wang Y C, Jacobs J M, et al. Quantitative phosphoproteome analysis of lysophosphatidic acid induced chemotaxis applying dualstep 18O labeling coupled with immobilized metal-ion affinity chromatography[J]. Journal of Proteome Research, 2008, 7(10):4215-4224.
[76] Jiang C P, Wdchuck J B, Goins W F, et al. Immobilized cobalt affinity chromatography provides a novel, efficient method for herpes simplex virus type 1 gene vector purification[J]. Journal of Virology, 2004, 78(17):8994-9006.
[77] Kanakaraj I, Jewell D L, Murphy J C, et al. Removal of PCR error products and unincorporated primers by metal-chelate affinity chromatography[J]. PloS One, 2011, 6(1):e14512.
[78] Ortiz-Martin L, Benavente F, Medina-Casanellas S, et al. Study of immobilized metal affinity chromatography sorbents for the analysis of peptides by on-line solid-phase extraction capillary electrophoresismass spectrometry[J]. Electrophoresis, 2015, 36(6):962-970.
[79] Robichon C, Luo J Y, Causey T B, et al. Engineering Escherichia coli BL21(DE3) derivative strains to minimize E. coli protein contamination after purification by immobilized metal affinity chromatography[J]. Applied and Environmental Microbiology, 2011, 77(13):4634-4646.
[80] Kaur J, Reinhardt D P. Immobilized metal affinity chromatography copurifies TGF-a1 with histidine-tagged recombinant extracellular proteins[J]. PloS One, 2012, 7(10):e48629.
[81] Ham B M, Jacob J T, Cole R B. MALDI-TOF MS of phosphorylated lipids in biological fluids using immobilized metal affinity chromatography and a solid ionic crystal matrix[J]. Analytical Chemistry, 2005, 77(14):4439-4447.
[82] Abelin J G, Trantham P D, Penny S A, et al. Complementary IMAC enrichment methods for HLA-associated phosphopeptide identification by mass spectrometry[J]. Nature Protocols, 2015, 10(9):1308-1318.
[83] Ye K M, Jin S, Ataai M M, et al. Tagging retrovirus vectors with a metal binding peptide and one-step purification by immobilized metal affinity chromatography[J]. Journal of Virology, 2004, 78(18):9820-9827.