综述文章

固定化金属离子亲和色谱研究进展

  • 韩彬
展开
  • 中国科学院植物研究所, 北京 100093
韩彬,工程师,研究方向为亲和色谱,电子信箱:binhan@ibcas.ac.cn

收稿日期: 2017-06-13

  修回日期: 2017-09-26

  网络出版日期: 2017-11-29

Recent advances in immobilized metal ion affinity chromatography

  • HAN Bin
Expand
  • Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China

Received date: 2017-06-13

  Revised date: 2017-09-26

  Online published: 2017-11-29

摘要

固定化金属离子亲和色谱是将过渡金属离子通过配体螯合在固相基质上,通过过渡金属离子与靶分子的组氨酸或半胱氨酸特异性结合形成相对稳定的复合物,最后以竞争性洗脱方式实现靶分子的富集与纯化,其核心为金属螯合亲和基质材料制备。具有亲和选择性高、生物兼容性好、可逆再生等优势,迄今已发展了40余年,广泛应用于靶分子的特异性富集、分离与纯化,本文综述了近3年固定化金属离子亲和色谱纳米材料、微球色谱基质、棉纤维、分子印迹材料、整体材料、共价有机骨架等方面的研究进展。

本文引用格式

韩彬 . 固定化金属离子亲和色谱研究进展[J]. 科技导报, 2017 , 35(22) : 92 -100 . DOI: 10.3981/j.issn.1000-7857.2017.22.012

Abstract

The immobilized metal ion affinity chromatography (IMAC) is based on the affinity between the transition metal ions and the target molecules, with the transition metal ions being immobilized on the solid matrix by ligands and combined with histidine or cysteine of the target molecules to form relatively stable complexes. The enrichment and the purification of the target molecules are achieved by the competitive elution. The IMAC, with the preparation of the metal chelate affinity materials as its core technology, has been developed for more than 40 years and widely used in the specific enrichment, separation and purification of the target molecules due to its high affinity selectivity, good biocompatibility and reversible regeneration. From the point of view of the analytical chemistry, the recent three-year advances in the IMAC nanomaterials, microsphere chromatography matrices, cotton fibers, molecularly imprinted materials, monolith and covalent organic frameworks are reviewed in this paper.

参考文献

[1] Porath J, Carlsson J, Olsson I, et al. Metal chelate affinity chromatography, a new approach to protein fractionation[J]. Nature, 1975, 258(5536):598-599.
[2] Lònnerdal B, Carlsson J, Porath J. Isolation of lactoferrin from human milk by metal-chelate affinity chromatography[J]. FEBS Letters, 1977, 75(1):89-92.
[3] Edy V G, Billiau A, Somer P D. Purification of human fibroblast interferon by zinc chelate affinity chromatography[J]. The Journal of Biological Chemistry, 1977, 252(17):5934-5935.
[4] Porath J, Olin B. Immobilized metal ion affinity adsorption and immobilized metal ion affinity chromatography of biomaterials. Serum protein affinities for gel-immobilized iron and nickel ions[J]. Biochemistry, 1983, 22(7):1621-1630.
[5] Andersson L. Fractionation of human serum proteins by immobilized metal affinity chromatography[J]. Journal of Chromatography, 1984, 315(12):167-174.
[6] Ramadan N, Porath J. Fe3+-Hydroxamate as immobilized metal affinityadsorbent for protein chromatography[J]. Journal of Chromatography, 1985, 321(1):93-104.
[7] Andersson L, Porath J. Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography[J]. Analytical Biochemistry, 1986, 154(1):250-254.
[8] Muszyńska G, Andersson L, Porath J. Selective adsorption of phosphoproteins on gel-immobilized ferric chelate[J]. Biochemistry, 1986, 25(22):6850-6853.
[9] Figueroa A, Corradini C, Feibush B, et al. High-performance immobilized-metal affinity chromatography of proteins on iminodiacetic acid silica-based bonded phases[J]. Journal of Chromatography, 1986, 371(371):335-352.
[10] Andersson L, Sulkowski E, Porath J. Facile resolution of α-fetoproteins and serum albumins by immobilized metal affinity chromatography[J]. Cancer Research, 1987, 47(14):3624-3626.
[11] Hemdan E S, Zhao Y J, Sulkowski E, et al. Surface topography of histidine residues:A facile probe by immobilized metal ion affinity chromatography[J]. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86(6):1811-1815.
[12] Schunter A J, Yue X, Hummon A B. Phosphoproteomics of colon can-cer metastasis:Comparative mass spectrometric analysis of the isogenic primary and metastatic cell lines SW480 and SW620[J]. Analytical and Bioanalytical Chemistry, 2017, 409(7):1749-1763.
[13] He Z, Tan J S, Lai O M, et al. Optimization of conditions for the single step IMAC purification of miraculin from Synsepalum dulcificum[J]. Food Chemistry, 2015, 181:19-24.
[14] Kennedy J J, Yan P, Zhao L, et al. Immobilized metal affinity chromatography coupled to multiple reaction monitoring enables reproducible quantification of phospho-signaling[J]. Molecular & Cellular Proteomics, 2016, 15(2):726-739.
[15] Kowalska E, Bartnicki F, Pels K, et al. The impact of immobilized metal affinity chromatography (IMAC) resins on DNA aptamer selection[J]. Analytical and Bioanalytical Chemistry, 2014, 406(22):5495-5499.
[16] 杨柳. 钴螯合亲和介质的制备及其在六聚组氨酸融合蛋白纯化中的应用[D]. 西安:西北大学, 2008. Yang Liu. Preparation of cobalt chelate affinity mediums and their application in purification of 6×His-tagged proteins[D]. Xi'an:Northwest University, 2008.
[17] Vijayalakshmi M A. Pseudobiospecific ligand affinity chromatography[J]. Trends in Biotechnology, 1989, 7(3):71-76.
[18] 文禹撷, 邹少兰, 林东强, 等. 双水相亲和萃取法从豆壳中分离过氧化物酶[J]. 食品科学, 2004, 25(7):93-96. Wen Yuxie, Zou Shaolan, Lin Dongqiang, et al. Affinity partition of soybean hull peroxidase in aqueous two-phase systems[J]. Food Science, 2004, 25(7):93-96.
[19] Anspach F B. Silica-based metal chelate affinity sorbents. I. Preparation and characterization of iminodiacetic acid affinity sorbents prepared via different immobilization techniques[J]. Journal of Chromatography A, 1994, 672:35-49.
[20] 李蓉, 邸泽梅, 陈国亮. 金属螯合亲和色谱中固定金属与蛋白质的作用[J]. 分析化学, 2002, 30(5):552-555. Li Rong, Di Zemei, Chen Guoliang. Interaction between immobilized metal and protein in metal chelate affinity chromatography[J]. Chinese Journal of Analytical Chemistry, 2002, 30(5):552-555.
[21] 李蓉, 陈国亮, 赵文明. 固定金属离子亲和色谱-蛋白质分离方法、原理和应用[J]. 化学通报, 2005, 68(5):352-360. Li Rong, Chen Guoliang, Zhao Wenming. Immobilized metal ion affinity chromatography——methods, principles,characteristics and applications for protein separation[J]. Chemistry Bulletin, 2005, 68(5):352-360.
[22] 白春礼. 纳米科技及其发展前景[J]. 科学通报, 2001, 46:89-92. Bai Chunli. Nanometer science and technology and its development prospect[J]. Science Bulletin. 2001, 46:89-92.
[23] Bond A E, Row P E, Dudley E. Post-translation modification of proteins; methodologies and applications in plant sciences[J]. Phytochemistry, 2011, 72(10):975-996.
[24] Dai J, Wang M, Liu H. Highly selective enrichment of phosphopeptides using Zr4+-immobilized Titania nanoparticles[J]. Talanta, 2017, 164:222-227.
[25] Harivardhan R L, Arias J L, Julien N, et al. Magnetic nanoparticles:Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications[J]. Chemical Reviews, 2012, 112(11):5818-5878.
[26] Rashid Z, Ghahremanzadeh R, Nejadmoghaddam M R, et al. Nickelsalen supported paramagnetic nanoparticles for 6-His-target recombinant protein affinity purification[J]. Journal of Chromatography A, 2017, 1490:47-53.
[27] Chen Y, Xiong Z, Peng L, et al. Facile preparation of core-shell magnetic metal-organic framework nanoparticles for the selective capture of phosphopeptides[J]. ACS Applied Materials & Interfaces, 2015, 7(30):16338-16347.
[28] Ma X, Ding C, Yao X, et al. Ethylene glycol assisted preparation of Ti4+-modified polydopamine coated magnetic particles with rough surface for capture of phosphorylated proteins[J]. Analytica Chimica Acta, 2016, 929:23-30.
[29] Piovesana S, Capriotti A L, Cavaliere C, et al. Phosphopeptide enrichment:Development of magnetic solid phase extraction method based on polydopamine coating and Ti4+-IMAC[J]. Analytica Chimica Acta, 2016, 909:67-74.
[30] Ge R, Shan W. Bacterial phosphoproteomic analysis reveals the correlation between protein phosphorylation and bacterial pathogenicity[J]. Genomics, Proteomics & Bioinformatics, 2011, 9(4/5):119-127.
[31] Zhang L, Liang Z, Zhang L, et al. Facile synthesis of gallium ions immobilized and adenosine functionalized magnetic nanoparticles with high selectivity for multi-phosphopeptides[J]. Analytica Chimica Acta, 2015, 900:46-55.
[32] Gladilovich V, Greifenhagen U, Sukhodolov N, et al. Immobilized metal affinity chromatography on collapsed Langmuir-Blodgett iron (Ⅲ) stearate films and iron(Ⅲ) oxide nanoparticles for bottom-up phosphoproteomics[J]. Journal of Chromatography A, 2016, 1443:181-190.
[33] Songa E A, Okonkwo J O. Recent approaches to improving selectivity and sensitivity of enzyme-based biosensors for organophosphorus pesticides:A review[J]. Talanta, 2016, 155:289-304.
[34] Jiang L, Huang T, Feng S, et al. Zirconium(IV) functionalized magnetic nanocomposites for extraction of organophosphorus pesticides from environmental water samples[J]. Journal of Chromatography A, 2016, 1456:49-57.
[35] Sun X, Liu X, Feng J, et al. Hydrophilic Nb5+-immobilized magnetic core-shell microsphere-A novel immobilized metal ion affinity chromatography material for highly selective enrichment of phosphopeptides[J]. Analytica Chimica Acta, 2015, 880:67-76.
[36] Salimi K, Usta D D, Koçer Ì, et al. Highly selective magnetic affinity purification of histidine-tagged proteins by Ni2+ carrying monodisperse composite microspheres[J]. RSC Advances, 2017, 7(14):8718-8726.
[37] Bo C, Wang C, Wei Y. Novel bis(5-methyltetrazolium)amine ligandbonded stationary phase with reduced leakage of metal ions in immobilized metal affinity chromatography of proteins[J]. Analytical and Bioanalytical Chemistry, 2016, 408(27):7595-7605.
[38] Britton J, Dyer R P, Majumdar S, et al. Ten-minute protein purification and surface tethering for continuous-flow biocatalysis[J]. Angewandte Chemie International, 2017, 56(9):1-6.
[39] Qin Q, Wang B, Chang M, et al. Highly efficient solid-phase derivatization of sugar phosphates with titanium-immobilized hydrophilic polydopamine-coated silica[J]. Journal of Chromatography A, 2016, 1457:125-133.
[40] Li S, Wang L, Yang J, et al. Affinity purification of metalloprotease from marine bacterium using immobilized metal affinity chromatography[J]. Journal of Separation Science, 2016, 39(11):2050-2056.
[41] Zhao L, Zhang J, Huang Y, et al. Efficient fabrication of high-capacity immobilized metal ion affinity chromatographic media:The role of the dextran-grafting process and its manipulation[J]. Journal of Separa-tion Science, 2016, 39(6):1130-1136.
[42] Mourão C A, Carmignotto G P, Bueno S M A. Separation of human IgG fragments using copper, nickel, zinc, and cobalt chelated to CMAsp-agarose by positive and negative chromatography[J]. Journal of Chromatography B, 2016, (1017/1018):163-173.
[43] Klement E, Raffai T, Medzihradszky K F. Immobilized metal affinity chromatography optimized for the analysis of extracellular phosphorylation[J]. Proteomics, 2016, 16(13):1858-1862.
[44] Yue X, Schunter A, Hummon A B. Comparing multi-step IMAC and multi-step TiO2 methods for phosphopeptide enrichment[J]. Analytical Chemistry, 2015, 87(17):8837-8844.
[45] Sun Z Y, Hamilton K L, Reardon K F. Evaluation of quantitative performance of sequential immobilized metal affinity chromatographic enrichment for phosphopeptides[J]. Analytical Biochemistry, 2014, 445(1):30-37.
[46] McCarthy P, Chattopadhyay M, Millhauser G L, et al. Nanoengineered analytical immobilized metal affinity chromatography stationary phase by atom transfer radical polymerization:Separation of synthetic prion peptides[J]. Analytical Biochemistry, 2007, 366(1):1-8.
[47] Ruprecht B, Koch H, Medard G, et al. Comprehensive and reproducible phosphopeptide enrichment using iron immobilized metal ion affinity chromatography (Fe-IMAC) columns[J]. Molecular & Cellular Proteomics, 2015, 14(1):205-215.
[48] Zhu F F, Trinidad J C, Clemmer D E. Glycopeptide site heterogeneity and structural diversity determined by combined lectin affinity chromatography/IMS/CID/MS techniques[J]. Journal of the American Society for Mass Spectrometry, 2015, 26(7):1092-1102.
[49] He X M, Zhu G T, Zhu Y Y, et al. Facile preparation of biocompatible sulfhydryl cotton fiber-based sorbents by "Thiol-ene" click chemistry for biological analysis[J]. ACS Applied Materials & Interfaces, 2014, 6(20):17857-17864.
[50] He X M, Chen X, Zhu G T, et al. Hydrophilic carboxyl cotton chelator for titanium(IV) immobilization and its application as novel fibrous sorbent for rapid enrichment of phosphopeptides[J]. ACS Applied Materials & Interfaces, 2015, 7(31):17356-17362.
[51] He X M, Zhu G T, Lu W, et al. Nickel(Ⅱ)-immobilized sulfhydryl cotton fiber for selective binding and rapid separation of histidine-tagged proteins[J]. Journal of Chromatography A, 2015, 1405:188-192.
[52] He X M, Chen X, Yuan B F, et al. Graft modification of cotton with phosphate group and its application to the enrichment of phosphopeptides[J]. Journal of Chromatography A, 2017, 1484:49-57.
[53] He X M, Yuan B F, Feng Y Q. Facial synthesis of nickel(Ⅱ)-immobilized carboxyl cotton chelator for purification of histidine-tagged proteins[J]. Journal of Chromatography B, 2017, 1043:122-127.
[54] Yang K, Zhang L, Liang Z, et al. Protein-imprinted materials:Rational design, application and challenges. Protein-imprinted materials:Rational design, application and challenges[J]. Analytical and Bioanalytical Chemistry, 2012, 403(8):2173-2183.
[55] Li S, Yang K, Liu J, et al. Surface-imprinted nanoparticles prepared with a his-tag-anchored epitope as the template[J]. Analytical Chemistry, 2015, 87(9):4617-4620.
[56] Li Q, Yang K, Li S, et al. Preparation of surface imprinted core-shell particles via a metal chelating strategy:specific recognition of porcine serum albumin[J]. Microchimica Acta, 2016, 183(1):345-352.
[57] Li S, Yang K, Zhao B, et al. Epitope imprinting enhanced IMAC (EⅡMAC) for highly selective purification of His-tagged protein[J]. Journal of Materials Chemistry B, 2016, 4(11):1960-1967.
[58] Ye Q, Zhou F, Liu W. Bioinspired catecholic chemistry for surface modification[J]. Chemical Society Reviews, 2011, 40:4244-4258.
[59] Yang Y, Zheng Z, Deng C, et al. Hydrophilic polydopamine-coated grapheme for metal ion immobilization as a novel immobilized metal ion affinity chromatography platform for phosphoproteome analysis[J]. Analytical Chemistry, 2013, 85(18):8483-8487.
[60] Shi C, Lin Q, Deng C. Preparation of on-plate immobilized metal ion affinity chromatography platform via dopamine chemistry for highly selective isolation of phosphopeptides with matrix assisted laser desorption/ionization mass spectrometry analysis[J]. Talanta, 2015, 135:81-86.
[61] Shi C, Deng C. Immobilized metal ion affinity chromatography ZipTip pipette tip with polydopamine modification and Ti4+ immobilization for selective enrichment and isolation of phosphopeptides[J]. Talanta, 2015, 143:464-468.
[62] Jiang B, Wu Q, Deng N, et al. Hydrophilic GO/Fe3O4/Au/PEG nanocomposites for highly selective enrichment of glycopeptides[J]. Nanoscale, 2016, 8(9):4894-4897.
[63] Zhang Q, Zhang Q, Xiong Z, et al. Facile preparation of mesoporous carbon-silica-coated grapheme for the selective enrichment of endogenous peptides[J]. Talanta, 2016, 146:272-278.
[64] Lin H, Deng C. Development of immobilized Sn4+ affinity chromatography material for highly selective enrichment of phosphopeptides[J]. Proteomics, 2016, 16(21):2733-2741.
[65] Han B, Zhao C, Yin J, et al. High performance aptamer affinity chromatography for single-step selective extraction and screening of basic protein lysozyme[J]. Journal of Chromatography B, 2012, 903(903):112-117.
[66] Han B, Wang P, Zhu G, et al. Microchip free flow isoelectric focusing for protein prefractionation using monolith with immobilized pH gradient[J]. Journal of Separation Science, 2009, 32(8):1211-1215.
[67] Wu C, Liang Y, Yang K, et al. Clickable periodic mesoporous organosilica monolith for highly efficient capillary chromatographic separation[J]. Analytical Chemistry, 2016, 88(3):1521-1525.
[68] Araya-Farias M, Dziomba S, Carbonnier B, et al. A lab-on-a-chip for monolith-based preconcentration and electrophoresis separation of phosphopeptides[J]. Analyst, 2017, 142(3):485-494.
[69] Zhang H, Ou J, Yao Y, et al. Facile preparation of titanium(IV)-immobilized hierarchically porous hybrid monoliths[J]. Analytical Chemistry, 2017, 89(8):4655-4662.
[70] Li Y, Bao T, Chen Z. Polydopamine-assisted immobilization of zeolitic imidazolate framework-8 for open-tubular capillary electrochromatography[J]. Journal of Separation Science, 2017, 40(4):954-961.
[71] Manna K, Zhang T, Lin W. ChemInform abstract:Postsynthetic metalation of bipyridyl-containing metal-organic frameworks for highly efficient catalytic organic transformations[J]. Journal of the American Chemical Society, 2014, 136(18):6566-6569.
[72] Wang H, Jiao F, Gao F, et al. Titanium (IV) ion-modified covalent organic frameworks for specific enrichment of phosphopeptieds[J]. Talanta, 2017, 166:133-140.
[73] Peng J, Zhang H, Li X, et al. Dual-metal centered zirconium-organic framework:A metal-affinity probe for highly specific interaction with phosphopeptides[J]. ACS Applied Materials & Interfaces, 2016, 8(51):35012-35020.
[74] Karakus C, Uslu M, Yazici D, et al. Evaluation of immobilized metal affinity chromatography kits for the purification of histidine-tagged recombinant CagA protein[J]. Journal of Chromatography B, 2016, 1021:182-187.
[75] Ding S J, Wang Y C, Jacobs J M, et al. Quantitative phosphoproteome analysis of lysophosphatidic acid induced chemotaxis applying dualstep 18O labeling coupled with immobilized metal-ion affinity chromatography[J]. Journal of Proteome Research, 2008, 7(10):4215-4224.
[76] Jiang C P, Wdchuck J B, Goins W F, et al. Immobilized cobalt affinity chromatography provides a novel, efficient method for herpes simplex virus type 1 gene vector purification[J]. Journal of Virology, 2004, 78(17):8994-9006.
[77] Kanakaraj I, Jewell D L, Murphy J C, et al. Removal of PCR error products and unincorporated primers by metal-chelate affinity chromatography[J]. PloS One, 2011, 6(1):e14512.
[78] Ortiz-Martin L, Benavente F, Medina-Casanellas S, et al. Study of immobilized metal affinity chromatography sorbents for the analysis of peptides by on-line solid-phase extraction capillary electrophoresismass spectrometry[J]. Electrophoresis, 2015, 36(6):962-970.
[79] Robichon C, Luo J Y, Causey T B, et al. Engineering Escherichia coli BL21(DE3) derivative strains to minimize E. coli protein contamination after purification by immobilized metal affinity chromatography[J]. Applied and Environmental Microbiology, 2011, 77(13):4634-4646.
[80] Kaur J, Reinhardt D P. Immobilized metal affinity chromatography copurifies TGF-a1 with histidine-tagged recombinant extracellular proteins[J]. PloS One, 2012, 7(10):e48629.
[81] Ham B M, Jacob J T, Cole R B. MALDI-TOF MS of phosphorylated lipids in biological fluids using immobilized metal affinity chromatography and a solid ionic crystal matrix[J]. Analytical Chemistry, 2005, 77(14):4439-4447.
[82] Abelin J G, Trantham P D, Penny S A, et al. Complementary IMAC enrichment methods for HLA-associated phosphopeptide identification by mass spectrometry[J]. Nature Protocols, 2015, 10(9):1308-1318.
[83] Ye K M, Jin S, Ataai M M, et al. Tagging retrovirus vectors with a metal binding peptide and one-step purification by immobilized metal affinity chromatography[J]. Journal of Virology, 2004, 78(18):9820-9827.
文章导航

/