专题论文

异军突起的冷冻电镜技术——2017年度诺贝尔化学奖成果简析

  • 雷建林
展开
  • 清华大学生命科学学院, 北京 100084
雷建林,研究员,研究方向为冷冻电镜成像技术,电子信箱:jllei@tsinghua.edu.cn

收稿日期: 2017-11-01

  修回日期: 2017-11-24

  网络出版日期: 2017-12-16

基金资助

国家重点研发计划项目(2016YFA0501102)

Emerging technique-cryo-electron microscopy:Commentary on the 2017 Nobel Prize for Chemistry

  • LEI Jianlin
Expand
  • School of Life Sciences, Tsinghua University, Beijing 100084, China

Received date: 2017-11-01

  Revised date: 2017-11-24

  Online published: 2017-12-16

摘要

2017年诺贝尔化学奖授予Jacques Dubochet、Joachim Frank和Richard Henderson 3位科学家,以表彰他们在开发用于溶液中生物分子高分辨率结构测定的冷冻电镜技术方面的贡献。本文将简述这3位科学家的获奖工作,并展望冷冻电镜技术的发展前景。

本文引用格式

雷建林 . 异军突起的冷冻电镜技术——2017年度诺贝尔化学奖成果简析[J]. 科技导报, 2017 , 35(23) : 22 -27 . DOI: 10.3981/j.issn.1000-7857.2017.23.003

Abstract

The 2017 Nobel Prize for Chemistry was awarded to three scientists (Jacques Dubochet, Joachim Frank and Richard Henderson) for developing cryo-electron microscopy for high-resolution structure determination of biomolecules in solutions. In this paper their work on the development of cryo-electron microscopy technique is briefly introduced and an outlook for the future development of this technique is also presented.

参考文献

[1] Liao M F, Cao E, Julius D, et al. Structure of the TRPV1 ion channel determined by electron cryo-microscopy[J]. Nature, 2013, 504(7478):107-112.
[2] Cao E, Liao M F, Cheng Y F, et al. TRPV1 structures in distinct conformations reveal activation mechanisms[J]. Nature, 2013, 504(7478):113-118.
[3] DeRosier D J, Klug A. Reconstruction of 3 dimensional structures from electron micrographs[J]. Nature, 1968, 217(5124):130-134.
[4] Taylor K A, Glaeser R M. Electron-diffraction of frozen, hydrated protein crystals[J]. Science, 1974, 186(4168):1036-1037.
[5] Dubochet J, Lepault J, Freeman R, et al. Electron-microscopy of frozen water and aqueous-solutions[J]. Journal of Microscopy-Oxford, 1982, 128(3):219-237.
[6] Adrian M, Dubochet J, Lepault J, et al. Cryo-electron microscopy of viruses[J]. Nature, 1984, 308(5954):32-36.
[7] Henderson R, Unwin P N T. 3-dimensional model of purple membrane obtained by electron-microscopy[J]. Nature,1975, 257(5521):28-32.
[8] Frank J. Three-dimensional electron microscopy of macromolecular assemblies[M]. New York:Oxford University Press, 2006.
[9] Frank J, Shimkin B, Dowse H. SPIDER-A modular software system for electron image-processing[J]. Ultramicroscopy, 1981, 6(1):343-357.
[10] Henderson R, Baldwin J M, Ceska T A. Model for the structure of bacteriorhodopsin based on high-resolution electron cryomicroscopy[J]. Journal of Molecular Biology, 1990, 213(4):899-929.
[11] Henderson R. The potential and limitations of neutrons, electrons and x-rays for atomic-resolution microscopy of unstained biological molecules[J]. Quarterly Reviews of Biophysics, 1995, 28(2):171-193.
[12] Henderson R. Realizing the potential of electron cryo-microscopy[J]. Quarterly Reviews of Biophysics, 2004, 37(1):3-13.
[13] Scheres SHW. RELION:Implementation of a bayesian approach to cryo-EM structure determination[J]. Journal of Structural Biology, 2012, 180(3):519-530.
[14] Zhang X, Settembre E C, Xu C, et al. Near-atomic resolution using electron cryomicroscopy and single-particle reconstruction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(6):1867-1872.
[15] Yu X K, Jin L, Zhou Z H. 3.88 angstrom structure of cytoplasmic polyhedrosis virus by cryo-electron microscopy[J]. Nature, 2008, 453(7193):415-419.
[16] Zhang X, Jin L, Fang Q, et al. 3.3 angstrom cryo-EM structure of a nonenveloped virus reveals a priming mechanism for cell entry[J]. Cell, 2010,141(3):472-482.
[17] Milazzo A, Cheng A C, Moeller A, et al. Initial evaluation of a direct detection device detector for single particle cryo-electron microscopy[J]. Journal of Structural Biology, 2011, 176(3):404-408.
[18] Li X M, Monner P, Zheng S Q, et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM[J]. Nature Methods, 2013, 10(6):584-590.
[19] Bai X C, Fernandez IS, McMullan G, et al. Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles[J]. eLife, 2013, 2, doi:10.7554/eLife.00461.
[20] Yan C Y, Hang J, Wan R X, et al. Structure of a yeast spliceosome at 3.6-angstrom resolution[J]. Science, 2015, 349(6253):1182-1191.
[21] Hang J, Wan R X, Yan C Y, et al. Structural basis of pre-mRNA splicing[J]. Science, 2015, 349(6253):1191-1198.
[22] Wan R X, Yan C Y, Bai R, et al. The 3.8 angstrom structure of the U4/U6.U5 tri-snRNP:Insights into spliceosome assembly and catalysis[J]. Science, 2016, 351(6272):466-475.
[23] Wan R X, Yan C Y, Bai R, et al. Structure of a yeast catalytic step I spliceosome at 3.4 angstrom resolution[J]. Science, 2016, 353(6302):895-904.
[24] Yan C Y, Wan R X, Bai R, et al. Structure of a yeast activated spliceosome at 3.5 angstrom resolution[J]. Science, 2016, 353(6302):904-911.
[25] Yan C Y, Wan R X, Bai R, et al. Structure of a yeast step Ⅱ catalytically activated spliceosome[J]. Science, 2017, 355(6321):149-155.
[26] Wan R X, Yan C Y, Bai R, et al. Structure of an intron lariat spliceosome from saccharomyces cerevisiae[J]. Cell, 2017, 171(1):120-132.
[27] Bai R, Yan C Y, Wan R X, et al. Structure of the post-catalytic spliceosome from saccharomyces cerevisiae[J]. Cell, 2017, doi:org/10.1016/j.cell.2017.10.038.
[28] Zhang X F, Yan C Y, Hang J, et al. An atomic structure of the human spliceosome[J]. Cell, 2017, 169(5):918-929.
[29] Zhang J, Ma J F, Liu D S, et al. Structure of phycobilisome from the red alga Griffithsia pacifica[J]. Nature, 2017, 551(7678):57-63.
[30] Wu J P, Yan Z, Li Z Q, et al. Structure of the voltage-gated calcium channel Ca(v)1.1 complex[J]. Science, 2015, 350(6267):2395.
[31] Wu J, Yan Z, Qian X, et al. Structure of the voltage-gated calcium channel Ca(v)1.1 at 3.6 angstrom resolution[J]. Nature, 2016, 537(7619):191-196.
[32] Gong X, Qian H W, Zhou X H, et al. Structural insights into the niemann-pick C1(NPC1)-mediated cholesterol transfer and ebola infection[J]. Cell, 2016, 165(6):1467-1478.
[33] Peng W, Shen H Z, Wu J P, et al. Structural basis for the gating mechanism of the type 2 ryanodine receptor RyR2[J]. Science, 2016, 354(16):5324.
[34] Shen H Z, Zhou Q, Pan X J, et al. Structure of a eukaryotic voltagegated sodium channel at near-atomic resolution[J]. Science, 2017, doi:10.1126/science.aal4326.
[35] Qian H W, Zhao X, Cao P P, et al. Structure of the human lipid exporter ABCA1[J]. Cell, 2017, 169(7):1228-1239.
[36] Yan Z, Zhou Q, Wang L, et al. Structure of the Na(v)1.4-beta 1 complex from electric eel[J]. Cell, 2017, 170(3):470-482.
[37] Gu J, Wu M, Guo R Y, et al. The architecture of the mammalian respirasome[J]. Nature, 2016, 537(7622):639-643.
[38] Wu M, Gu J, Guo R Y, et al. Structure of mammalian respiratory supercomplex I1Ⅲ2IV1[J]. Cell, 2016, 167(6):1598-1609.
[39] Guo R Y, Zong S, Wu M, et al. Architecture of human mitochondrial respiratory megacomplex I2Ⅲ2IV2[J]. Cell, 2017, 170(6):1247-1257.
[40] Song F, Chen P, Sun D P, et al. Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units[J]. Science, 2014, 344(6182):376-380.
[41] Wei X, Su X, Cao P, et al. Structure of spinach photosystem Ⅱ-LHCⅡ supercomplex at 3.2 angstrom resolution[J]. Nature, 2016, 534(7605):69-74
[42] Su X D, Ma J, Wei X P, et al. Structure and assembly mechanism of plant C2S2M2-type PSⅡ-LHCⅡ supercomplex[J]. Science, 357(6353):815-820.
[43] Wang X J, Ran T T, Zhang X, et al. 3.9Å structure of the yeast Mec1-Ddc2 complex, a homolog of human ATR-ATRIP[J]. Science, 358(6367):1206-1209.
[44] Fan X, Zhao L Y, Liu C, et al. Near-atomic resolution structure determination in over-focus with volta phase plate by Cs-corrected cryoEM[J]. Structure, 2017, 25(10):1623-1630.
[45] Wang F, Gong H C, Liu C C, et al. DeepPicker:A deep learning approach for fully automated particle picking in cryo-EM[J]. Journal of Structural Biology, 2016,195(3):325-336.
[46] Zhou N, Wang H, Wang J. EMBuilder:A template matching-based automatic model-building program for high-resolution cryo-electron microscopy maps[J]. Scientific Reports, 2017, 7(1):2664.
[47] Lei J L, Frank J. Automated acquisition of cryo-electron micrographs for single particle reconstruction on an FEI Tecnai electron microscope[J]. Journal of Structural Biology, 2005, 150(1):69-80.
[48] Li S G, Ji G, Shi Y, et al. High-vacuum optical platform for cryoCLEM (HOPE):A new solution for non-integrated multiscale correlative light and electron microscopy[J]. Journal of Structural Biology, 2017, doi:org/101016/j.jsb.2017.11.002.
[49] Li X X, Ji G, Chen X, et al. Large scale three-dimensional reconstruction of an entire Caenorhabditis elegans larva using AutoCUTS-SEM[J]. Journal of Structural Biology, 2017, 200(2):87-96.
[50] Zhang J G, Ji G, Huang X J, et al. An improved cryo-FIB method for fabrication of frozen hydrated lamella[J]. Journal of Structural Biology, 2016, 194(2):218-223.
[51] Chen Y, Zhang Y, Zhang K, et al. FIRT:Filtered iterative reconstruction technique with information restoration[J]. Journal of Structural Biology, 2016, 195(1):49-61.
[52] Deng Y C, Chen Y, Zhang Y, et al. ICON:3D reconstruction with ‘missing-information’ restoration in biological electron tomography[J]. Journal of Structural Biology, 2016, 195(1):100-112.
[53] Han R M, Wan X H, Wang Z H, et al. AuTom:A novel automatic platform for electron tomography reconstruction[J]. Journal of Structural Biology, 2017, 199(3):196-208.
[54] Liu H R, Cheng L P. Cryo-EM shows the polymerase structures and a nonspooled genome within a dsRNA virus[J]. Science, 2015, 349(6254):1347-1350.
文章导航

/