专题论文

冷冻电子显微技术——2017年度诺贝尔化学奖成果简析

  • 马成英 ,
  • 高宁
展开
  • 膜生物学国家重点实验室;北京大学-清华大学联合生命科学中心;北京大学生命科学学院, 北京 100871
马成英,博士后,研究方向为生物大分子结构与功能,电子信箱:mcy0916@163.com

收稿日期: 2017-11-25

  修回日期: 2017-12-05

  网络出版日期: 2017-12-16

Cryo-electron microscopy:Commentary on the 2017 Nobel Prize in Chemistry

  • MA Chengying ,
  • GAO Ning
Expand
  • State Key Laboratory of Membrane Biology;Peking-Tsinghua Joint Center for Life Sciences;School of Life Sciences, Peking University, Beijing 100871, China

Received date: 2017-11-25

  Revised date: 2017-12-05

  Online published: 2017-12-16

摘要

2017年度诺贝尔化学奖授予瑞士洛桑大学的Jacques Dubochet、美国哥伦比亚大学的Joachim Frank和英国MRC分子生物学实验室的Richard Henderson 3位科学家。本文简要介绍冷冻电镜的发展历史、3位诺贝尔奖获得者在冷冻电镜技术发展过程中的贡献以及国际和国内的最新研究进展。

本文引用格式

马成英 , 高宁 . 冷冻电子显微技术——2017年度诺贝尔化学奖成果简析[J]. 科技导报, 2017 , 35(23) : 28 -32 . DOI: 10.3981/j.issn.1000-7857.2017.23.004

Abstract

The 2017 Nobel Prize in Chemistry was awarded to Jacques Dubochet, Joachim Frank and Richard Henderson for their contributions to the development of cryo-electron microscopy (cryo-EM) in determining the solution structures of biomolecular assemblies. In this article, we briefly introduce the history of cryo-EM and comment on the essential roles these three scientists have played in realizing this cutting-edge technique. We also present a summary of recent research breakthroughs that were made by Chinese scientists.

参考文献

[1] De Rosier D J, Klug A. Reconstruction of three dimensional structures from electron micrographs[J]. Nature, 1968, 217(5124):130-134.
[2] Henderson R, Unwin P N. Three-dimensional model of purple membrane obtained by electron microscopy[J]. Nature, 1975, 257(5521):28-32.
[3] Taylor K A, Glaeser R M. Electron diffraction of frozen, hydrated protein crystals[J]. Science, 1974, 186(4168):1036-1037.
[4] Adrian M, Dubochet J, Lepault J, et al. Cryo-electron microscopy of viruses[J]. Nature, 1984, 308(5954):32-36.
[5] Henderson R, Baldwin J M, Ceska T A, et al. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy[J]. Journal of Molecular Biology, 1990, 213(4):899-929.
[6] Kuhlbrandt W, Wang D N. Three-dimensional structure of plant lightharvesting complex determined by electron crystallography[J]. Nature, 1991, 350(6314):130-134.
[7] Nogales E, Wolf S G, Downing K H. Structure of the alpha beta tubulin dimer by electron crystallography[J]. Nature, 1998, 391(6663):199-203.
[8] Gonen T, Cheng Y, Sliz P, et al. Lipid-protein interactions in doublelayered two-dimensional AQP0 crystals[J]. Nature, 2005, 438(7068):633-638.
[9] Frank J. Averaging of low exposure electron micrographs of non-periodic objects[J]. Ultramicroscopy, 1975, 1(2):159-162.
[10] Henderson R. The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules[J]. Quarterly Reviews of Biophysics, 1995, 28(2):171-193.
[11] Li X, Mooney P, Zheng S, et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryoEM[J]. Nature Methods, 2013, 10(6):584-590.
[12] Liao M, Cao E, Julius D, et al. Structure of the TRPV1 ion channel determined by electron cryo-microscopy[J]. Nature, 2013, 504(7478):107-112.
[13] Zhang X, Jin L, Fang Q, et al. 3.3Å cryo-EM structure of a nonenveloped virus reveals a priming mechanism for cell entry[J]. Cell, 2010, 141(3):472-482.
[14] Kuhlbrandt W. Biochemistry:The resolution revolution[J]. Science, 2014, 343(6178):1443-1444.
[15] Liang Y L, Khoshouei M, Radjainia M, et al. Phase-plate cryo-EM structure of a class B GPCR-G-protein complex[J]. Nature, 2017, 546(7656):118-123.
[16] Khoshouei M, Radjainia M, Baumeister W, et al. Cryo-EM structure of haemoglobin at 3.2Å determined with the volta phase plate[J]. Nature Communications, 2017, 8:16099.
[17] Scheres S H. RELION:Implementation of a Bayesian approach to cryo-EM structure determination[J]. Journal of Structural Biology, 2012, 180(3):519-530.
[18] Wang H W, Lei J L, Shi Y G. Biological cryo-electron microscopy in China[J]. Protein Science 2017, 26(1):16-31.
[19] Song F, Chen P, Sun D P, et al. Cryo-EM study of the chromatin fiber reveals a Double Helix Twisted by tetranucleosomal units[J]. Science, 2014, 344(6182):376-380.
[20] Zhang X, Yan C, Hang J, et al. An atomic structure of the human spliceosome[J]. Cell, 2017, 169(5):918-929.
[21] Wu J, Yan Z, Li Z, et al. Structure of the voltage-gated calcium channel Ca(v)1.1 at 3.6Å resolution[J]. Nature, 2016, 537(7619):191-196.
[22] Wu M, Gu J, Guo R, et al. Structure of mammalian respiratory supercomplex I1Ⅲ2IV1[J]. Cell 2016, 167(6):1598-1609.
[23] Zhang J, Ma J, Liu D, et al. Structure of phycobilisome from the red alga Griffithsia pacifica[J]. Nature, 2017, 551(7678):57-63.
[24] Wei X, Su X, Cao P, et al. Structure of spinach photosystem Ⅱ-LHCⅡ supercomplex at 3.2Å resolution[J]. Nature, 2016, 534(7605):69-74.
[25] Gong X, Qian H, Zhou X, et al. Structural insights into the niemannPick C1(NPC1)-mediated cholesterol transfer and ebola infection[J]. Cell, 2016, 165(6):1467-1478.
[26] Wu S, Tutuncuoglu B, Yan K, et al. Diverse roles of assembly factors revealed by structures of late nuclear pre-60S ribosomes[J]. Nature, 2016, 534(7605):133-137.
[27] Ma C Y, Kurita D, Li N N, et al. Mechanistic insights into the alternative translation termination by ArfA and RF2[J]. Nature, 2017, 541(7638):550-553.
[28] Liu J J, Bratkowski M A, Liu X, et al. Visualization of distinct substrate-recruitment pathways in the yeast exosome by EM[J]. Nature Structural & Molecular Biology, 2014, 21(1):95-102.
[29] Wei R, Wang X, Zhang Y, et al. Structural insights into Ca(2+)-activated long-range allosteric channel gating of RyR1[J]. Cell Research, 2016, 26(9):977-994.
[30] Sun Q, Zhu X, Qi J, et al. Correction:Molecular architecture of the 90S small subunit pre-ribosome[J]. Elife, 2017, 6.
[31] Wang C Y, Zhang Q F, Gao Y Z, et al. Insight into the three-dimensional structure of maize chlorotic mottle virus revealed by cryo-EM single particle analysis[J]. Virology, 2015, 485:171-178.
[32] Lu Y, Wu J, Dong Y, et al. Conformational landscape of the p28-Bound human proteasome regulatory particle[J]. Molecular Cell, 2017, 67(2):322-333.
[33] Yin X, Liu M, Tian Y, et al. Cryo-EM structure of human DNA-PK holoenzyme[J]. Cell Research, 2017, 27(11):1341-1350.
[34] Xu J, Gui M, Wang D, et al. The bacteriophage varphi29 tail possesses a pore-forming loop for cell membrane penetration[J]. Nature, 2016, 534(7608):544-547.
[35] Liu X, Li M, Xia X, et al. Mechanism of chromatin remodelling revealed by the Snf2-nucleosome structure[J]. Nature, 2017, 544(7651):440-445.
[36] Hu Z, Zhou Q, Zhang C, et al. Structural and biochemical basis for induced self-propagation of NLRC4[J]. Science, 2015, 350(6259):399-404.
[37] Zang Y, Jin M, Wang H, et al. Staggered ATP binding mechanism of eukaryotic chaperonin TRiC (CCT) revealed through high-resolution cryo-EM[J]. Nature Structural & Molecular Biology, 2016, 23(12):1083-1091.
[38] Li N, Wu J X, Ding D, et al. Structure of a pancreatic ATP-sensitive potassium channel[J]. Cell, 2017, 168(1-2):101-110.
[39] Wang X, Ran T, Zhang X, et al. 3.9 A structure of the yeast Mec1-Ddc2 complex, a homolog of human ATR-ATRIP[J]. Science, 2017, 358(6367):1206-1209.
[40] Han R, Wan X, Wang Z, et al. AuTom:A novel automatic platform for electron tomography reconstruction[J]. Journal of Structural Biology, 2017, 199(3):196-208.
[41] Deng Y, Chen Y, Zhang Y, et al. ICON:3D reconstruction with ‘missing-information’ restoration in biological electron tomography[J]. Journal of Structural Biology, 2016, 195(1):100-112.
[42] Chen Y, Zhang Y, Zhang K, et al. FIRT:Filtered iterative reconstruction technique with information restoration[J]. Journal of Structural Biology, 2016, 195(1):49-61.
[43] Wang F, Gong H, Liu G, et al. DeepPicker:A deep learning approach for fully automated particle picking in cryo-EM[J]. Journal of Structural Biology, 2016, 195(3):325-336.
[44] Liu H R, Cheng L P. Cryo-EM shows the polymerase structures and a nonspooled genome within a dsRNA virus[J]. Science, 2015, 349(6254):1347-1350.
[45] Fan X, Zhao L, Liu C, et al. Near-atomic resolution structure determination in over-focus with volta phase plate by Cs-corrected cryo-EM[J]. Structure, 2017, 25(10):1623-1630.
[46] Zhou N, Wang H, Wang J. EMBuilder:A template matching-based automatic model-building program for high-resolution cryo-electron microscopy maps[J]. Scientific Reports, 2017, 7(1):2664.
文章导航

/