研究论文

铜锰复合氧化物低温催化氧化甲醛的性能研究

  • 陈莹 ,
  • 贺军辉 ,
  • 田华 ,
  • 王东辉 ,
  • 杨巧文
展开
  • 1. 中国科学院理化技术研究所微纳材料与技术研究中心功能纳米材料实验室, 北京 100190;
    2. 中国矿业大学(北京)化学与环境工程学院, 北京 100083;
    3. 防化研究院, 北京 100083
陈莹,硕士研究生,研究方向为净化空气纳米材料研发,电子信箱:chenying3.3@163.com

收稿日期: 2016-08-24

  修回日期: 2017-02-28

  网络出版日期: 2017-12-16

基金资助

国家自然科学基金项目(21271177,21571182);中国科学院理化技术研究所所长基金项目

Copper manganese oxides for formaldehyde catalytic oxidation at low temperature

  • CHEN Ying ,
  • HE Junhui ,
  • TIAN Hua ,
  • WANG Donghui ,
  • YANG Qiaowen
Expand
  • 1. Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
    2. School of Chemical and Environmental Engineering, China University of Mining and Technology(Beijing), Beijing 100083, China;
    3. Research Institute of Chemical Defense, Beijing 100083, China

Received date: 2016-08-24

  Revised date: 2017-02-28

  Online published: 2017-12-16

摘要

采用简单的氧化还原方法,通过控制Cu和Mn物质的量之比及煅烧温度等条件合成了一系列铜锰复合氧化物。通过考察合成条件对催化剂的晶相、形貌以及催化活性的影响,从而确定最佳的工艺条件,结合X射线衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)等多种表征手段揭示催化剂结构和活性的关系。研究结果表明,在单一锰氧化物中,铜的掺杂促进氧物种移动,使得铜锰复合氧化物具有较低的还原温度和较强氧化还原能力,且结晶度差的无定型态同样有利于氧空穴的增加,从而有利于甲醛的催化氧化。当Cu/Mn物质的量之比为1:2、煅烧温度为300℃时制得的铜锰复合催化剂催化性能最佳,能够在90℃下完全降解甲醛。

本文引用格式

陈莹 , 贺军辉 , 田华 , 王东辉 , 杨巧文 . 铜锰复合氧化物低温催化氧化甲醛的性能研究[J]. 科技导报, 2017 , 35(23) : 46 -51 . DOI: 10.3981/j.issn.1000-7857.2017.23.007

Abstract

A series of copper manganese oxides are synthesized using a simple redox method by controlling the molar ratio of Cu and Mn and calcination temperature. The optimum conditions are determined by investigating the effects of synthesis conditions on crystal phase, morphology and catalytic activity of catalysts. The relationship between structure and activity of catalyst is revealed by combining X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and other characterizations. The results show that more oxygen vacancy generated by the addition of copper may promote the oxygen species mobile, which leads to a lower reduction temperature and strong ability of oxidation reduction. The amorphous type of copper manganese oxide with poor crystallinity is also beneficial to the increase of oxygen vacancy, which facilitates the catalytic oxidation of formaldehyde. The catalyst with copper and manganese molar ratio of 1:2 and calcination temperature of 300℃ exhibites the best catalytic performance and can completely decompose formaldehyde at 90℃.

参考文献

[1] Sekine Y, Nishimura A. Removal of formaldehyde from indoor air by passive type air-cleaning materials[J]. Atmospheric Environment, 2001, 35(11):2001-2007.
[2] Sekine Y. Oxidative decomposition of formaldehyde by metal oxides at room temperature[J]. Atmospheric Environment, 2002, 36(35):5543-5547.
[3] Sidheswaran M A, Destaillats H, Sullivan D P, et al. Quantitative roomtemperature mineralization of airborne formaldehyde using manganese oxide catalysts[J]. Applied Catalysis B Environmental, 2011, 107(1-2):34-21.
[4] Tian H, He J H, Zhang X, et al. Facile synthesis of porous manganese oxide K-OMS-2 materials and their catalytic activity for formaldehyde oxidation[J]. Microporous & Mesoporous Materials, 2011, 138(1-3):118-122.
[5] Chen H M, He J H, Zhang C B, et al. Self-assembly of novel mesoporous manganese oxide nanostructures and their application in oxidative decomposition of formaldehyde[J]. Journal of Physical Chemistry C, 2007, 111(49):18033-18038.
[6] Yu X H, He J H, Wang D, et al. Facile controlled synthesis of Pt/MnO2 nanostructured catalysts and their catalytic performance for oxidative decomposition of formaldehyde[J]. Journal of Physical Chemistry C, 2011, 116(1):851-860.
[7] Yu X H, He J H, Wang D, et al. Au-Pt bimetallic nanoparticles supported on nest-like MnO2:Synthesis and application in HCHO decomposition[J]. Journal of Nanoparticle Research, 2012, 14(11):1-14.
[8] Shi C, Wang Y, Zhu A, et al. MnxCo3-xO4 solid solution as high-efficient catalysts for low-temperature oxidation of formaldehyde[J]. Catalysis Communications, 2012, 28(28):18-22.
[9] Wang Y, Zhu A, Crocker M, et al. Three-dimensional ordered mesoporous Co-Mn oxide:A highly active catalyst for "storage-oxidation" cycling for the removal of formaldehyde[J]. Catalysis Communications, 2013, 36:52-57.
[10] Fang D R, Ren W Z, Liu Z M, et al. Synthesis of mesoporous Cu-MnAl2O3 materials and their applications to preferential catalytic oxidation of CO in a hydrogen-rich stream[J]. Chemical Research in Chinese Universities, 2010, 26(1):105-109.
[11] Li W B, Zhuang M, Xiao T C, et al. MCM-41 supported Cu-Mn catalysts for catalytic oxidation of toluene at low temperatures[J]. Journal of Physical Chemistry B, 2006, 110(43):21568-21571.
[12] Terribile D, Trovarelli A, Leitenburg C D, et al. Catalytic combustion of hydrocarbons with Mn and Cu-doped ceria-zirconia solid solutions[J]. Catalysis Today, 1999, 47(98):133-140.
[13] Krämer M, Schmidt T, Stöwe K, et al. Structural and catalytic aspects of sol-gel derived copper manganese oxides as low-temperature CO oxidation catalyst[J]. Applied Catalysis A General, 2006, 302(1):112.
[14] Njagi E C, Chen C H, Genuino H, et al. Total oxidation of CO at ambient temperature using copper manganese oxide catalysts prepared by a redox method[J]. Applied Catalysis B Environmental, 2010, 99(1-2):103-110.
[15] Kireev A S, Mukhin V M, Kireev S G, et al. Preparation and properties of modified hopcalite[J]. Russian Journal of Applied Chemistry, 2009, 82(1):169-171.
[16] Tang Z R, Christopher D J, James K W A, et al. New nanocrystalline Cu/MnOx catalysts prepared from supercritical antisolvent precipitation[J]. Chemcatchem, 2009, 1(2):247-251.
[17] Sinha A K, Suzuki K, Takahara M, et al. Mesostructured manganese oxide/gold nanoparticle composites for extensive air purification[J]. Angewandte Chemie, 2007, 46(16):2891-2894.
[18] Minicò S, Scirè S, Crisafulli C. Catalytic combustion of volatile organic compounds on gold/iron oxide catalysts[J]. Applied Catalysis B Environmental, 2000, 28(3):245-251.
[19] Njagi E C, Genuino H C, King'Ondu C K, et al. Catalytic oxidation of ethylene at low temperatures using porous copper manganese oxides[J]. Applied Catalysis A General, 2012, 421(422):154-160.
[20] Cai L N, Guo Y, Lu A H, et al. The choice of precipitant and precursor in the co-precipitation synthesis of copper manganese oxide for maximizing carbon monoxide oxidation[J]. Journal of Molecular Catalysis A Chemical, 2012, 360(360):35-41.
[21] Jones C, Cole K J, Taylor S H. Copper manganese oxide catalysts for ambient temperature carbon monoxide oxidation:Effect of calcination on activity[J]. Journal of Molecular Catalysis A Chemical, 2009, 305(1-2):121-124.
[22] Min K, Park E D, Ji M K, et al. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures[J]. Applied Catalysis A General, 2007, 327(2):261-269.
[23] Ettireddy P R, Ettireddy N, Mamedov S, et al. Surface characterization studies of TiO2, supported manganese oxide catalysts for low temperature SCR of NO with NH3[J]. Applied Catalysis B Environmental, 2007, 76(1-2):123-134.
[24] Tian H, He J H, Liu L, et al. Effects of textural parameters and noble metal loading on the catalytic activity of cryptomelane-type manganese oxides for formaldehyde oxidation[J]. Ceramics International, 2013, 39(1):315-321.
[25] Tian H, He J H, Liu L, et al. Highly active manganese oxide catalysts for low-temperature oxidation of formaldehyde[J]. Microporous & Mesoporous Materials, 2012, 151(11):397-402.
[26] Hasegawa Y I, Maki R U, Sano M, et al. Preferential oxidation of CO on copper-containing manganese oxides[J]. Applied Catalysis A, 2009, 371(1-2):67-72.
[27] Mirzaei A A, Faizi M, Habibpour R. Effect of preparation conditions on the catalytic performance of cobalt manganese oxide catalysts for conversion of synthesis gas to light olefins[J]. Applied Catalysis A General, 1998, 166(1):143-152.
[28] Morales M R, Barbero B P, Cadús L E. Evaluation and characterization of Mn-Cu mixed oxide catalysts for ethanol total oxidation:Influence of copper content[J]. Fuel, 2008, 87(7):1177-1186.
[29] Kang M, Park E D, Kim J M, et al. Cu-Mn mixed oxides for low temperature NO reduction with NH3[J]. Catalysis Today, 2006, 111(3):236-241.
[30] Kapteijn F, Singoredjo L, Andreini A, et al. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia[J]. Cheminform, 1994, 25(23):173-189.
文章导航

/