研究论文

北京怀九河河岸带植物多样性及影响因子分析

  • 孔庆仙 ,
  • 信忠保 ,
  • 夏晓平
展开
  • 北京林业大学水土保持学院, 北京 100083
孔庆仙,硕士研究生,研究方向为河岸带生态修复,电子信箱:qingxiankong@163.com

收稿日期: 2017-07-23

  修回日期: 2017-10-30

  网络出版日期: 2017-12-29

基金资助

北京市科技服务业专项(Z151100001115001)

Riparian vegetation diversity and its influencing factors of Huaijiu River in Beijing

  • KONG Qingxian ,
  • XIN Zhongbao ,
  • XIA Xiaoping
Expand
  • School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China

Received date: 2017-07-23

  Revised date: 2017-10-30

  Online published: 2017-12-29

摘要

植物多样性是河岸带的重要生态特征,是河岸带健康与否的重要标志。为了解北京山区河岸带健康状况及其影响因素,通过布设调查样地和室内分析,探讨植物多样性特征及其影响因子。通过主成分分析和聚类分析将怀九河河岸带划分为6种类型,分别命名为自然河岸带、近自然河岸带、人工岸坡乔灌草河岸带、人工岸坡观赏性乔灌草河岸带、人工岸坡疏乔灌草干砌石河岸带和人工岸坡浆砌石河岸带。随海拔高度升高,河岸带植物多样性指数增大。不同类型河岸带植物多样性有所差异,人工浆砌石河岸带植物多样性指数显著低于其他类型河岸带(n=50,P<0.05)。河岸带乔灌Shannon多样性指数和Margalef丰富度指数显著低于草本(n=50,P<0.05),草本植物适应环境能力强、灵活性好的特点使得植物种类多样而丰富,而乔灌容易受到人类影响使得多样性、丰富度较低。Pearson相关性分析表明:河岸带植物Shannon多样性指数与岸坡类型和硬化面积比例呈显著负相关(n=50,P<0.01),与海拔高度呈显著正相关(n=50,P<0.05)。

本文引用格式

孔庆仙 , 信忠保 , 夏晓平 . 北京怀九河河岸带植物多样性及影响因子分析[J]. 科技导报, 2017 , 35(24) : 57 -65 . DOI: 10.3981/j.issn.1000-7857.2017.24.007

Abstract

The plant diversity is one of the important ecological factors in the riparian, as an important symbol of the riparian healthy. In order to ensure the riparian health in Beijing mountainous area and reveal its influencing factors, sampling and indoor analysis are carried out, to study the relationship between the plant diversity and the environmental factors. According to the principle component analysis and the cluster analysis, the Huaijiu river riparian falls into six types, namely, the natural riparian, the near-natural riparian, the artificial bank plant riparian, the artificial bank ornamental plant riparian, the artificial bank sparse plant dry-stone riparian, and the artificial bank masonry riparian. With the increase of the elevation, the diversity index of the riparian increases. Different riparian types have different variations of plant species, and the diversity index of the artificial bank masonry riparian is significantly lower than other riparian types (n=50, P<0.05). The riparian tree and shrub Shannon diversity and Margalef abundance index are significantly lower than those of the herb (n=50, P<0.05), and the herbaceous plants may adapt to the environment easily and with flexibility that makes various and abundant plant species, while the trees and shrubs are vulnerable to the human influences and have lower diversity and abundance. The Pearson correlation analysis shows that the riparian plant Shannon diversity index and the hardening area ratio and the slope types have significantly negative correlation(n=50, P<0.01), while the altitude is significantly positively related to the riparian plant Shannon diversity index and the hardening area ratio(n=50, P<0.05). This study can provide a reference for the riparian health and the protection of the plant diversity, and provide a theoretical support for the development and management of the riparian.

参考文献

[1] 韩路, 王海珍, 于军. 河岸带生态学研究进展与展望[J]. 生态环境学报, 2013, 22(5):879-886. Han Lu, Wang Haizhen, Yv Jun. Research progress and prospects on ri-parian zone ecology[J]. Ecology and Environmental Science, 2013, 22(5):879-886.
[2] Naiman R J, Decamps H. The ecology of interfaces:riparian zones[J]. Annual Review of Ecology and Systematics, 1997, 28(28):621-658.
[3] Elliott K J, Vose J M. Effects of riparian zone buffer widths on vegeta-tion diversity in southern Appalachian headwater catchments[J]. Forest Ecology and Management, 2016, 376:9-23.
[4] 杨胜天, 王雪蕾, 刘昌明, 等. 岸边带生态系统研究进展[J]. 环境科学学报, 2007, 27(6):894-905. Yang Shengtian, Wang Xuelei, Liu Changming et al. Research advances in the study of riparian ecosystems[J]. Acta Scientiae Circumstantiae, 2007, 27(6):894-905.
[5] Bedison J E, Scatena F N, Mead J V. Influences on the spatial pattern of soil carbon and nitrogen in forested and non-forested riparian zones in the Atlantic Coastal Plain of the Delaware River Basin[J]. Forest Ecology and Management, 2013, 302:200-209.
[6] Kuglerová L, Ågren A, Jansson R, et al. Towards optimizing riparian buffer zones:Ecological and biogeochemical implications for forest man-agement[J]. Forest Ecology and Management, 2014, 334:74-84.
[7] Xiang H, Zhang Y, Richardson J S.. Importance of Riparian Zone:Ef-fects of Resource Availability at Land-water Interface[J]. Riparian Ecol-ogy & Conservation, 2016, 3(1):1-17.
[8] 赵清贺, 马丽娇, 刘倩, 等. 黄河中下游典型河岸带植物物种多样性及其对环境的响应[J]. 生态学杂志, 2015, 34(5):1325-1331. Zhao Qinghe, Ma Lijiao, Liu Qian, et al. Plant species diversity and its responds to environmental factors in typical river riparian zone in the middle and lower reaches of Yellow River[J]. Chinese Journal of Ecolo-gy, 2015, 34(5):1325-1331.
[9] 张昶, 王成, 孙睿霖, 等. 城市化地区河岸带植被特征及其与河岸硬度的关系——以晋江市为例[J]. 生态学报, 2016, 36(12):3703-3713. Zhang Chang, Wang Cheng, Sun Ruizhi, et al.. Relationships between ri-parian vegetation and shoreline hardness for urban rivers:a case study in Jinjiang City[J]. Acta Ecologica Sinica, 2016, 36(12):3703-3713.
[10] Sunil C, Somashekar R K, Nagaraja B C. Riparian vegetation assess-ment of Cauvery River Basin of South India[J]. Environ Monit Assess, 2010, 80(170):545-553.
[11] Stella J C, Rodríguez-González P M, Dufour S, et al. Riparian vegeta-tion research in Mediterranean-climate regions:common patterns, eco-logical processes, and considerations for management[J]. Hydrobiolo-gia, 2013, 719(1):291-315.
[12] 邓红兵, 王青春, 王庆礼, 等. 河岸植被缓冲带与河岸带管理[J]. 应用生态学报, 2001, 12(6):951-954. Deng Hongbing, Wang Qingchun, Wang Qingli, et al. On riparian for-est buffers and riparian management[J]. Chinese Journal of Applied Ecology, 2001, 12(6):951-954.
[13] 周欣, 左小安, 赵学勇, 等. 科尔沁沙地植物群落分布与土壤特性关系的DCA、CCA及DCCA分析[J]. 生态学杂志, 2015, 34(4):947-954. Zhou Xin, Zuo Xiaoan, Zhao Xueyong, et al. Comparison analyses of DCA, CCA and DCCA on relationships between plant community dis-tribution and soil properties of Horqin Sandy Land[J]. Chinese Journal of Ecology, 2015, 34(4):947-954.
[14] 梁雪, 何萍, 任颖, 等. 子牙河水系滨岸带植物群落结构及其与环境关系[J]. 水土保持通报, 2017, 37(1):248-253. Liang Xue, He Ping, Ren Ying, et al. Relationship between plant com-munities and environment factors in riparian zone along Ziya River[J]. Bulletin of Soil and Water Conservation. 2017, 37(1):248-253.
[15] 刘亚琦, 刘家珍, 陈永金, 等. 孔雀河下游断流河道的环境特征及物种间关系[J]. 生态学报, 2017, 37(8):1-13. Liu Yaqi, Liu Jiazhen, Chen Yongjin, et al. Environmental characteris-tics and interspecific associations in the lower reaches of the Kongque River[J]. Acta Ecologica Sinaca, 2017, 37(8):1-13.
[16] Ahmad S S, Shabbir R, Ahmed M N, et al. Environmental Diversifica-tion and Spatial Variations in Riparian Vegetation:A Case Study of Korang River, Islamabad[J]. Pakistan Journal of Botany, 2014, 46(4):1203-1210.
[17] Pielech R, Anioł-Kwiatkowska J, Szczęśniak E. Landscape-scale fac-tors driving plant species composition in mountain streamside and spring riparian forests[J]. Forest Ecology & Management, 2015, 347:217-227.
[18] 高甲荣, 冯泽深, 高阳, 等. 河溪近自然评价:方法与应用[M]. 北京:中国水利水电出版社. 2010:94-96. Gao Jiarong, Feng Zesheng, Gao Yang, et al. The near-nature evaluate of river:method and applications[M]. Beijing:Chinese Waterpower Press. 2010.
[19] 吴春霞, 刘瑞涵, 何忠伟. 北京沟域经济背景下山区生态旅游市场开发研究[J]. 中国农学通报, 2010, 26(14):400-404. Wu Chunxia, Liu Ruihan, He Zhngwei. Marketing development of mountain ecotourism in Beijing valley economy[J]. Chinese Agricultur-al Science Bulletin, 2010, 26(14):400-404.
[20] 夏继红, 严忠民. 生态河岸带综合评价理论与修复技术[M]. 北京:中国水利水电出版社, 2009. Xia Jihong, Yan Zhongmin. The ecological riparian zone comprehen-sive evaluation theory and repair technology[M]. Beijing:Beijing:Chi-nese Waterpower Press, 2009.
[21] 刘瑛, 高甲荣. 土壤生物工程技术在河流生态修复中的应用[M]. 北京:中国林业出版社, 2012:21-22. Liu Ying, Gao Jiarong. The application of soil bioengineering technolo-gies in river ecology restoration[M]. Beijing:China Forestry Publishing House, 2012:21-22.
[22] Jones K, Hanna E. Design and implementation of an ecological engi-neering approach to coastal restoration at Loyola Beach, Kleberg Coun-ty, Texas[J]. Ecological Engineering, 2004, 22(4-5):249-261.
[23] Gómez-Mercado F, Giménez Luque E, López Carrique E, et al. Eco-logical ordination and distribution of hygrophilous species growing on a Mediterranean riverbank (SW Spain)[J]. Notulae Botanicae Horti Agrobotanici, 2012, 40(2):22-30.
[24] 温存, 高阳, 高甲荣, 等. 河溪近自然治理技术及其评价方法[J]. 中国水土保持科学, 2006, 4(S1):39-44. Wencun, Gaoyang, Gaojiarong, et al. Near natural stream control tech-niques and its assessment system[J]. Science of soil and water conser-vation, 2006, 4(S1):39-44.
[25] 高阳, 高甲荣, 陈子珊, 等. 河溪近自然治理评价指标体系探讨及应用[J]. 水土保持研究, 2007, 6(14):404-407. Wen Cun, Gao Jiarong, Chen Zishan, et al. The introduction of near natural stream control assessment system and its utilization[J]. Re-search of Soil and Water Conservation, 2007, 6(14):404-407.
[26] 高阳, 高甲荣, 冯泽深, 等. 怀九河小流域生态系统近自然定量评价[J]. 干旱区资源与环境, 2009, 23(4):64-68. Gao Yang, Gao Jiarong, Feng Zeshen, et al. The near-natural quantita-tive assessment system of small watershed ecosystems of Huaijiu River[J]. Journal of Arid Land Resources and Environment, 2009, 23(4):64-68.
[27] 吕晶, 高甲荣, 张金瑞, 等. 京郊河溪生态护坡系统评价研究[J]. 安徽农业科学, 2010, 38(3):1623-1626. Lv Jing, Gao Jiarong, Zhang Jinrui, et al. Evaluation study of stream ecological slope protection system in Suburb of Beijing[J]. Journal of Anhui Agri Sci, 2010, 38(3):1623-1626.
[28] 刘瑛. 土壤生物工程技术在河岸生态修复中应用效果的研究[D]. 北京:北京林业大学, 2011. Liu Ying. Effects of soil bioengineering techniques applied in river bank ecological restoration[D]. Beijing:Beijing Forestry University, 2011.
[29] 陈子珊, 高甲荣, 包昱峰, 等. 河溪利用方式对河岸带木本植物多样性的影响——以安达木河上游为例[J]. 水土保持研究, 2008, 15(4):189-191. Chen Zishan, Gao Jiarong, Bao Yvfeng, et al. Impacts of stream use on woody plant diversity in Upriver riparian of Andamuhe River[J]. Research of Soil and Water Conservation, 2008, 15(4):189-191.
[30] 冯泽深, 高甲荣, 杨海龙, 等. 北京市怀柔区乡村河溪利用方式及演变分析[J]. 水土保持研究, 2008, 15(5):97-100. Feng Zeshen, Gao Jiarong, Yang Hailong, et al. Stream use and its fu-ture changes in rural area of Huairou district of Beijing[J]. Research of Soil and Water Conservation, 2008, 15(5):97-100.
[31] 贺士元, 邢其华, 尹祖堂. 北京植物志[M]. 北京:北京出版社, 1992. He Shiyuan, Xing Qihua, Yin Zutang. Flora of Beijing[M]. Beijing:Beijing Press, 1992.
[32] 中国科学院中国植物志编辑委员会. 中国植物志[M]. 北京:科学出版社, 2004. Chinese academy of sciences, Chinese academy of sciences. Flora of China[M]. Beijing:Science Press, 2004.
[33] Shannon C E, Weaver W. The mathematical theory of communication[J]. Urbana, University of Illinois Press, 1963.
[34] Margalef R. Information theory in ecology[J]. General Systematics, 1958, 3:36-71.
[35] Pielou E C. Specices diversity and pattern diversity in the study of ecological succession[J]. Jourmal of Theoretacal Biology, 1966, 10(2):370-383.
[36] Cadotte M W, Carscadden K, Mirotchnick N. Beyond species:function-al diversity and the maintenance of ecological processes and services[J]. Journal of Applied Ecology, 2011, 48(5):1079-1087.
[37] Tabacchi E, Planty-Tabacchi A, Salinas M J, et al. Landscape struc-ture and diversity in riparian plant communities:A longitudinal com-parative study[J]. River Research & Applications, 2010, 12(4-5):367-390.
[38] 刘培斌, 高小薇, 王利军, 等. 北京山区河流生态系统健康评价方法及其应用研究[J]. 水利水电技术, 2016, 1:98-101. Liu Peibing, Gao Xiaowei, Wang Lijun, et al. Method of assessment on ecosystem health of mountain rivers in Beijing and its application[J]. Hydroelectricity Research, 2016, 1:98-101.
[39] Lyon J, Gross N M. Patterns of plant diversity and plant-environmen-tal relationships across three riparian corridors[J]. Forest Ecology & Management, 2005, 204(2/3):267-278.
[40] Gentili R, Armiraglio S, Rossi G, et al. Floristic patterns, ecological gradients and biodiversity in the composite channels(Central Alps, Ita-ly)[J]. Flora, 2010, 205(6):388-398.
[41] Xu X L, Zhang Q, Tan Z Q, et al. Effects of water-table depth and soil moisture on plant biomass, diversity, and distribution at a season-ally flooded wetland of Poyang Lake, China[J]. Chinese Geographical Science, 2015, 25(6):1-18.
[42] Fernández-Aláez C, Fernández-Aláez M, Garcáa-Criado F. Spatial distribution pattern of the riparian vegetation in a basin in the NW Spain[J]. Plant Ecology, 2005, 179(1):31-42.
文章导航

/