2017年高能物理领域的探究主要围绕标准模型的高精度检验、新物理的探寻这2个方面前进。本文盘点2017年在标准模型的检验与新粒子直接探测、重味物理与CP破坏、量子色动力学与强子物理、中微子物理、暗物质探测5个方面取得的进展,并对高能物理的未来发展作一展望。
In particle physics of 2017, most works focused on testing the standard model (SM) and searching for signals of new physics beyond SM. In this article, we review the hot topics in the past year, including direct measurements of SM and new physics, heavy flavor physics and CP violation, QCD and new exotics, neutrino physics and dark matter. The future development of particle physics is also prospected.
[1] Indico. The fi fth annual large hadron collider physics (LHCP 2017)[EB/OL].[2017-05-15]. http://indico.ihep.ac.cn/event/6419/.
[2] Indico. The international symposium on lepton photon interactions at high energies (LP 2017)[EB/OL].[2017-08-07]. http://indico.ihep.ac.cn/event/6183/.
[3] Indico. The third China LHC physics workshop (CLHCP 2017)[EB/OL].[2017-12-23]. http://indico.ihep.ac.cn/event/7102.
[4] Patrignani C, Group P D. Review of particle physics[J]. Chinese Physics C, 2016, 40(9):100001-100006.
[5] Aaij R, Adeva B, Adinolfi M, et al. Search for baryon-number violating Ξb0 oscillations[J]. Physical Review Letters, 2017, 119(18):181807.
[6] Aaij R, Adeva B, Adinolfi M, et al. Measurement of matter-antimatter differences in beauty baryon decays[J]. Nature Physics, 2017(13):391-396.
[7] Amhis Y, Banerjee S, Ben H S, et al. Heavy Flavor Averaging Group[J/OL].[2017-12-23]. http://www.slac.stanford.edu/xorg/hfag/.
[8] Zoltan L. The role of flavor in 2016[J/OL].[2017-12-23]. https://arxiv.org/abs/1704.02938.
[9] Aaij R, Adeva B, Adinolfi M, et al. Test of lepton universality using B+→K+ℓ+ℓ- decays[J]. Physical Review Letters, 2014, 113(15):151601.
[10] Aaij R, Adeva B, Adinolfi M, et al. Test of lepton universality with B0→K*0l+ l- decays[J]. Journal of High Energy Physics, 2017(8):055.
[11] Aaij R, Adeva B, Adinolfi M, et al. Observation of the doubly charmed baryon Ξcc++[J]. Physical Review Letters, 2017, 119(11):112001.
[12] Li R H, Lü C D, Wang W, et al. Doubly-heavy baryon weak decays:Ξbc0→pK- and Ξc+→Σc++ (2520)K-[J]. Physics Letters B, 2017(767):232-235.
[13] Ablikim M, Achasov M N, Ai X C, et al. Determination of the spin and parity of the Zc(3900)[J]. Physical Review Letters, 2017, 119(7):072001.
[14] Aidala C A, Bass S D, Hasch D, et al. The spin structure of the nucleon[J]. Reviews of Modern Physics, 2013, 85(2):655.
[15] Yang Y B, Sufian R S, Alexandru A, et al. Glue spin and helicity in the proton from lattice QCD[J]. Physical Review Letters, 2017, 118(10):102001.
[16] Steven D. Viewpoint:Spinning Gluons in the Proton[J/OL].[2017-12-23]. https://physics.aps.org/articles/v10/23.
[17] Stefano G, Carlo G, Marco L. Daya Bay[EB/OL].[2017-12-15]. http://www.nu.to.infn.it/exp/all/dayabay/.
[18] Abe K, Amey J, Andreopoulos C, et al. Measurement of neutrino and antineutrino oscillations by the T2K experiment including a new additional sample of νe, interactions at the far detector[J]. Physical Review D, 2017, 96(6):092006.
[19] An F P, Balantekin A B, Band H R, et al. Evolution of the reactor antineutrino flux and spectrum at daya bay[J]. Physical Review Letters, 2017, 118(25):251801.
[20] Cui X, Abdukerim A, Chen W, et al. Dark matter results from 54-ton-day exposure of PandaX-Ⅱ experiment[J]. Physical Review Letters, 2017, 119(18):181302.
[21] Aprile E, Aalbers J, Agostini F, et al. First dark matter search results from the XENON1T experiment[J]. Physical Review Letters, 2017, 119(18):181301.
[22] Collaboration D, Ambrosi G, An Q, et al. Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons[J]. Nature, 2017(552):63-66.