[1] Courtesy Caltech/MIT/LIGO Laboratory. Virgo detector[EB/OL].[2017-12-10]. https://www.ligo.caltech.edu/.
[2] Nature photonics[EB/OL]. (2017-01-03)[2017-12-10]. https://www.nature.com/nphoton/volumes/11/issues/1.
[3] Optics in 2017[EB/OL]. (2017-12-01)[2017-12-10]. https://www.osa-opn.org/home/articles/volume_28/december_2017/features/optics_in_2017/.
[4] Stockman M I. Nanoplasmonics:Past, present, and glimpse into future[J]. Optics Express, 2011,19(22):22029-22106.
[5] Halas N J, Lal S, Chang W S, et al. Plasmons in strongly coupled metallic nanostructures[J]. Chemical Reviews, 2011, 111(6):3913-3961.
[6] Valev V K, Baumberg J J, Sibilia C, et al. Chirality and chiroptical effects inplasmonic nanostructures:Fundamentals, recent progress, and outlook[J]. Advanced Materials, 2013, 25(18):2517-2534.
[7] Hentschel M, Schäferling M, Duan X, et al. Chiral plasmonics[J]. Science Advances, 2017, 3(5):e1602735.
[8] Bai F, Deng J, Yang M, et al. Two chiroptical modes of silvernanospirals[J]. Nanotechnology 2016, 27(11):115703.
[9] Gorkunov M V, Ezhov A A, Artemov V V, et al. Extreme optical activity and circular dichroism of chiral metal hole arrays[J]. Applied Physics Letters, 2014, 104(22):221102.
[10] Höflich K, Yang R B, Berger A, et al. The direct writing of plasmonic gold nanostructures by electron-beam-induced deposition[J]. Advanced Materials, 2011, 23(22/23):2657-2661.
[11] Esposito M, Tasco V, CuscunàM, et al. Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies[J]. ACS Photonics, 2015, 2(1):105-114.
[12] Johnson D. For first time, on-chip nanoantennas enable highbit-rate transmission[EB/OL].[2017-07-19]. https://spectrum.ieee.org/nanoclast/semiconductors/devices/for-first-time-on-chip-nanoantennas-enable-highbit-rate-transmission.
[13] Annoni A, Guglielmi E, Carminati M, et al. Unscrambling light-automatically undoing strong mixing between modes[J]. Light:Science & Applications, 2017(6):1-10.
[14] Morichetti F, Grillanda S, Melloni A. Breakthroughs in photonics 2013:Toward feedback-controlledintegrated photonics[J]. IEEE Photonics Journal,2014, 6(2):0701306.
[15] Drescher M, Hentschel M, Kienberger R, et al. X-ray pulses approaching the attosecond frontier[J]. Science, 2001, 291(5510):1923-1927.
[16] Lan P F, Ruhmann M, He L X, et al. Attosecond probing of nuclear dynamics with trajectory-resolved high-harmonic spectroscopy[J]. Physical Review Letters, 2017, 119(3):033201.
[17] Labaune C, Hulin D, Galvanauskas A, et al. On the feasibility of a fiber-based inertial fusion laser driver[J]. Optics Communications, 2008, 281(15/16):4075-4080.
[18] National Acadmies of Sciences, Engineering, and Medicine. Opportunities in intense ultrafast lasers:Reaching for the brightest light[M]. Washington D C:The National Academies Press, 2017:E17-E20.
[19] Zhu J Q, Xie X L, Yang Q W, et al. Introduction to SG-Ⅱ 5 PW laser facility[C]. Conference on Lasers and Electro-Optics. Piscataway, NJ:IEEE, 2016:1-2.
[20] Zeng X M, Zhou K N, Zuo Y L, et al. Multi-petawatt laser facility fully based on optical parametric chirped-pulse amplification[J]. Optics Letters, 2017, 42(10):2014-2017.
[21] 吕志坚, 陆敬泽, 吴雅琼, 等. 几种超分辨率荧光显微技术的原理和近期进展[J]. 生物化学与生物物理进展, 2009, 36(12):1626-1634. Lü Zhijian, Lu Jingze, Wu Yaqiong, et al. Introduction to theories of several super-resolution fluorescence microscopy methods and recent advance in the field[J]. Progress in Biochemistry & Biophysics, 2009, 36(12):1626-1634.
[22] Fang N, Lee H, Sun C, et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721):534-537.
[23] Gao H, Pu M, Li X, et al. Super-resolution imaging with a Bessel lens realized by a geometric metasurface[J]. Optics Express, 2017, 25(12):13933-13943.
[24] Luo X, Ishihara T. Surface plasmon resonant interference nanolithography technique[J]. Applied Physics Letters, 2004, 84(23):4780-4782.
[25] Hojman E, Chaigne T, Solomon O, et al. Photoacoustic imaging beyond the acoustic diffraction-limit with dynamic speckle illumination and sparse joint support recovery[J]. Optics Express, 2017, 25(5):4875-4886.
[26] Chaigne T, Gateau J, Allain M, et al. Super-resolution photoacoustic fluctuation imaging with multiple speckle illumination[J]. Optica, 2016, 3(1):54-57.
[27] Dertinger T, Colyer R, Iyer G, et al. Fast, background-free, 3D super-resolution optical fluctuation imaging(SOFI)[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(52):22287-22292.
[28] Gardner D F, Tanksalvala M, Shanblatt E R, et al. Subwavelength coherent imaging of periodic samples using a 13.5 nm tabletop high-harmonic light source[J]. Nature Photonics, 2017, 11(4):259-263.
[29] Hojman E, Chaigne T, Solomon O, et al. Photoacoustic imaging beyond the acoustic diffraction-limit with dynamic speckle illumination and sparse joint support recovery[J]. Optics Express, 2017, 25(5):4875-4886.
[30] Palacios-Berraquero C, Barbone M, Kara D M, et al. Atomically thin quantum light-emitting diodes[J]. Nature Communications, 2016, 7:12978.
[31] Palacios-Berraquero C, Kara D M, Montblanch A R, et al. Large-scale quantum-emitter arrays in atomically thin semiconductors[J]. Nature Communications, 2017, 8:15093.
[32] Wang H, He Y, Li Y H,et al. High-efficiency multiphoton boson sampling[J]. Nature Photonics, 2017, 11(6):361-365.
[33] Hamilton C S, Kruse R, Sansoni L, et al. Gaussian Boson Sampling[C]//Conference on Lasers and Electro-Optics. Washington D C:Optical Society of America, 2017:FTu1F.2.
[34] Zhang X C, Shkurinov A, Zhang Y. Extreme terahertz science[J]. Nature Photonics, 2017:16-18.
[35] Qin H, Li X, Sun J, et al. Detection of incoherent broadband terahertz light using antenna-coupled high-electron-mobility field-effect transistors[J]. Applied Physics Letters, 2017, 110(17):R161.
[36] Stake J. Graphene enables high-speed electronics on flexible materials[EB/OL]. (2017-10-31)[2017-12-10]. http://www.mynewsdesk.com/uk/chalmers/pressreleases/graphene-enables-high-speed-electronics-on-flexible-materials-2241525?utm_source=rss&utm_medium=rss&utm_campaign=Subscription&utm_content=pressrelease.
[37] Hardesty L. Tiny terahertz laser could be used for imaging, chemical detection[EB/OL]. (2017-8-8)[2017-12-10]. https://phys.org/news/2017-08-tiny-terahertz-laser-imaging-chemical.html.
[38] Kazakov D, Piccardo M, Wang Y R, et al. Self-starting harmonic frequency comb generation in a quantum cascade laser[J]. Nature Photonics, 2017, 11(12):789-792.
[39] New terahertz imaging approach could speed up skin cancer detection[EB/OL]. (2017-8-17)[2017-12-10]. https://phys.org/news/2017-08-terahertz-imaging-approach-skin-cancer.html.
[40] Yabashi M, Tanaka H. The next ten years of X-ray science[J]. Nature Photonics, 2017, 11(1):12-14.
[41] Holler M, Guizarsicairos M, Tsai E H, et al. High-resolution non-destructive three-dimensional imaging of integrated circuits[J]. Nature, 2017, 543(7645):402-406.
[42] 3-D X-ray imaging makes the finest details of a computer chip visible[EB/OL]. (2017-03-16)[2017-12-10]. https://www.psi.ch/media/3-d-x-ray-imaging-makes-the-finest-detailsof-a-computer-chip-visible.
[43] Courtland R. X-rays map the 3D interior of integrated circuits[EB/OL]. (2017-05-17)[2017-12-10]. http://spectrum.ieee.org/nanoclast/semiconductors/processors/xray-ic-imaging.
[44] CISCO visual networking index:Forecast and methodology, 2016-2021[EB/OL]. (2017-09-15)[2017-12-10]. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visualnetworking-index-vni/complete-white-paper-c11-4813-60.html.
[45] Riesen N, Gross S, Love J D, et al. Monolithic mode-selective few-mode multicore fiber multiplexers[J]. Scientific Reports, 2017, 7(1):6971.
[46] Bezryadina A, Hansson T, Gautam R, et al. Nonlinear self-action of light through biological suspensions[J]. Physical Review Letters, 2017, 119(5):058101.
[47] Bacterial waveguides of light[EB/OL]. (2017-12-01)[2017-12-10]. https://www.osa-opn.org/home/articles/volume_28/december_2017/extras/bacterial_waveguides_of_light/.
[48] 杨栋, 刘力谱, 杨宏,等. 激光微纳3D打印[J]. 激光与光电子学进展, 2018, 55(1):011416. Yang Dong, Liu Lipu, Yang Hong, et al. Laser micro-nano 3D printing[J]. Laser & Optoelectronics Progress, 2018, 55(1):011416.
[49] 杨玥, 钱滨, 刘畅, 等. 激光3D打印玻璃研究现状及进展[J]. 激光与光电子学进展, 2018, 55(1):011406. Yang Yue, Qian Bin, Liu Chang, et al. 3D Laser Printing of glass-Present situation and research progress[J]. Laser & Optoelectronics Progress, 2018, 55(1):011406.
[50] Thiele S, Arzenbacher K, Gissibl T, et al. 3D-printed eagle eye:Compound microlens system for foveated imaging.[J]. Science Advances, 2017, 3(2):e1602655.
[51] Engineers 3-D print a "living tattoo":New technique 3-D prints programmed cells into living devices for first time[EB/OL]. (2017-12-05)[2017-12-10]. http://news.mit.edu/2017/engineers-3-d-print-living-tattoo-1205.
[52] Shusteff M, Browar A E M, Kelly B E, et al. One-step volumetric additive manufacturing of complex polymer structures[J]. Science Advances, 2017, 3(12):eaao5496.
[53] Zhang Y, Shin Y, Sung K, et al. 3D imaging of optically cleared tissue using a simplified CLARITY method and onchip microscopy[J]. Science Advances, 2017, 3(8):e1700553.
[54] Singh A K, Naik D N, Pedrini G, et al. Exploiting scattering media for exploring 3D objects[J]. Light Science & Applications, 2017, 6(2):e16219.
[55] Singh A K, Pedrini G, Takeda M, et al. Scatter-plate microscope for lensless microscopy with diffraction limited resolution[J]. Scientific Reports, 2017, 7(1):10687.