专题论文

2017年光学热点回眸

  • 谢兴龙 ,
  • 沈卫星 ,
  • 朱健强
展开
  • 中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
谢兴龙,研究员,研究方向为超短脉冲激光技术,电子信箱:xiexl329@mail.shcnc.ac.cn

收稿日期: 2017-12-26

  修回日期: 2018-01-02

  网络出版日期: 2018-01-30

基金资助

中国科学院国际合作项目(29201631251100101)

Memorable sounds in optics and photonics in 2017

  • XIE Xinglong ,
  • SHEN Weixing ,
  • ZHU Jianqiang
Expand
  • National Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechnics, Chinese Academy of Sciences, Shanghai 201800, China

Received date: 2017-12-26

  Revised date: 2018-01-02

  Online published: 2018-01-30

摘要

随着激光的诞生,光学已渗透到人类生活的方方面面。盘点了微纳光学、超强激光、超分辨技术、太赫兹技术、量子计算、激光3D打印、计算光学成像技术、光通信、生物光子学、X射线成像等10个未来可能会对人类生存及生活方式产生巨大影响的光学技术研究领域在2017年的重大进展。

本文引用格式

谢兴龙 , 沈卫星 , 朱健强 . 2017年光学热点回眸[J]. 科技导报, 2018 , 36(1) : 18 -30 . DOI: 10.3981/j.issn.1000-7857.2018.01.003

Abstract

Since the birth of laser, optics and photonics have penetrated into all aspects of people's life. This article summarizes the 2017 major progresses in this field and draws up an inventory of ten optical research directions that are likely to have enormous impact on human existence and way of life in the future. The related research work and progress are briefly reviewed as well.

参考文献

[1] Courtesy Caltech/MIT/LIGO Laboratory. Virgo detector[EB/OL].[2017-12-10]. https://www.ligo.caltech.edu/.
[2] Nature photonics[EB/OL]. (2017-01-03)[2017-12-10]. https://www.nature.com/nphoton/volumes/11/issues/1.
[3] Optics in 2017[EB/OL]. (2017-12-01)[2017-12-10]. https://www.osa-opn.org/home/articles/volume_28/december_2017/features/optics_in_2017/.
[4] Stockman M I. Nanoplasmonics:Past, present, and glimpse into future[J]. Optics Express, 2011,19(22):22029-22106.
[5] Halas N J, Lal S, Chang W S, et al. Plasmons in strongly coupled metallic nanostructures[J]. Chemical Reviews, 2011, 111(6):3913-3961.
[6] Valev V K, Baumberg J J, Sibilia C, et al. Chirality and chiroptical effects inplasmonic nanostructures:Fundamentals, recent progress, and outlook[J]. Advanced Materials, 2013, 25(18):2517-2534.
[7] Hentschel M, Schäferling M, Duan X, et al. Chiral plasmonics[J]. Science Advances, 2017, 3(5):e1602735.
[8] Bai F, Deng J, Yang M, et al. Two chiroptical modes of silvernanospirals[J]. Nanotechnology 2016, 27(11):115703.
[9] Gorkunov M V, Ezhov A A, Artemov V V, et al. Extreme optical activity and circular dichroism of chiral metal hole arrays[J]. Applied Physics Letters, 2014, 104(22):221102.
[10] Höflich K, Yang R B, Berger A, et al. The direct writing of plasmonic gold nanostructures by electron-beam-induced deposition[J]. Advanced Materials, 2011, 23(22/23):2657-2661.
[11] Esposito M, Tasco V, CuscunàM, et al. Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies[J]. ACS Photonics, 2015, 2(1):105-114.
[12] Johnson D. For first time, on-chip nanoantennas enable highbit-rate transmission[EB/OL].[2017-07-19]. https://spectrum.ieee.org/nanoclast/semiconductors/devices/for-first-time-on-chip-nanoantennas-enable-highbit-rate-transmission.
[13] Annoni A, Guglielmi E, Carminati M, et al. Unscrambling light-automatically undoing strong mixing between modes[J]. Light:Science & Applications, 2017(6):1-10.
[14] Morichetti F, Grillanda S, Melloni A. Breakthroughs in photonics 2013:Toward feedback-controlledintegrated photonics[J]. IEEE Photonics Journal,2014, 6(2):0701306.
[15] Drescher M, Hentschel M, Kienberger R, et al. X-ray pulses approaching the attosecond frontier[J]. Science, 2001, 291(5510):1923-1927.
[16] Lan P F, Ruhmann M, He L X, et al. Attosecond probing of nuclear dynamics with trajectory-resolved high-harmonic spectroscopy[J]. Physical Review Letters, 2017, 119(3):033201.
[17] Labaune C, Hulin D, Galvanauskas A, et al. On the feasibility of a fiber-based inertial fusion laser driver[J]. Optics Communications, 2008, 281(15/16):4075-4080.
[18] National Acadmies of Sciences, Engineering, and Medicine. Opportunities in intense ultrafast lasers:Reaching for the brightest light[M]. Washington D C:The National Academies Press, 2017:E17-E20.
[19] Zhu J Q, Xie X L, Yang Q W, et al. Introduction to SG-Ⅱ 5 PW laser facility[C]. Conference on Lasers and Electro-Optics. Piscataway, NJ:IEEE, 2016:1-2.
[20] Zeng X M, Zhou K N, Zuo Y L, et al. Multi-petawatt laser facility fully based on optical parametric chirped-pulse amplification[J]. Optics Letters, 2017, 42(10):2014-2017.
[21] 吕志坚, 陆敬泽, 吴雅琼, 等. 几种超分辨率荧光显微技术的原理和近期进展[J]. 生物化学与生物物理进展, 2009, 36(12):1626-1634. Lü Zhijian, Lu Jingze, Wu Yaqiong, et al. Introduction to theories of several super-resolution fluorescence microscopy methods and recent advance in the field[J]. Progress in Biochemistry & Biophysics, 2009, 36(12):1626-1634.
[22] Fang N, Lee H, Sun C, et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721):534-537.
[23] Gao H, Pu M, Li X, et al. Super-resolution imaging with a Bessel lens realized by a geometric metasurface[J]. Optics Express, 2017, 25(12):13933-13943.
[24] Luo X, Ishihara T. Surface plasmon resonant interference nanolithography technique[J]. Applied Physics Letters, 2004, 84(23):4780-4782.
[25] Hojman E, Chaigne T, Solomon O, et al. Photoacoustic imaging beyond the acoustic diffraction-limit with dynamic speckle illumination and sparse joint support recovery[J]. Optics Express, 2017, 25(5):4875-4886.
[26] Chaigne T, Gateau J, Allain M, et al. Super-resolution photoacoustic fluctuation imaging with multiple speckle illumination[J]. Optica, 2016, 3(1):54-57.
[27] Dertinger T, Colyer R, Iyer G, et al. Fast, background-free, 3D super-resolution optical fluctuation imaging(SOFI)[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(52):22287-22292.
[28] Gardner D F, Tanksalvala M, Shanblatt E R, et al. Subwavelength coherent imaging of periodic samples using a 13.5 nm tabletop high-harmonic light source[J]. Nature Photonics, 2017, 11(4):259-263.
[29] Hojman E, Chaigne T, Solomon O, et al. Photoacoustic imaging beyond the acoustic diffraction-limit with dynamic speckle illumination and sparse joint support recovery[J]. Optics Express, 2017, 25(5):4875-4886.
[30] Palacios-Berraquero C, Barbone M, Kara D M, et al. Atomically thin quantum light-emitting diodes[J]. Nature Communications, 2016, 7:12978.
[31] Palacios-Berraquero C, Kara D M, Montblanch A R, et al. Large-scale quantum-emitter arrays in atomically thin semiconductors[J]. Nature Communications, 2017, 8:15093.
[32] Wang H, He Y, Li Y H,et al. High-efficiency multiphoton boson sampling[J]. Nature Photonics, 2017, 11(6):361-365.
[33] Hamilton C S, Kruse R, Sansoni L, et al. Gaussian Boson Sampling[C]//Conference on Lasers and Electro-Optics. Washington D C:Optical Society of America, 2017:FTu1F.2.
[34] Zhang X C, Shkurinov A, Zhang Y. Extreme terahertz science[J]. Nature Photonics, 2017:16-18.
[35] Qin H, Li X, Sun J, et al. Detection of incoherent broadband terahertz light using antenna-coupled high-electron-mobility field-effect transistors[J]. Applied Physics Letters, 2017, 110(17):R161.
[36] Stake J. Graphene enables high-speed electronics on flexible materials[EB/OL]. (2017-10-31)[2017-12-10]. http://www.mynewsdesk.com/uk/chalmers/pressreleases/graphene-enables-high-speed-electronics-on-flexible-materials-2241525?utm_source=rss&utm_medium=rss&utm_campaign=Subscription&utm_content=pressrelease.
[37] Hardesty L. Tiny terahertz laser could be used for imaging, chemical detection[EB/OL]. (2017-8-8)[2017-12-10]. https://phys.org/news/2017-08-tiny-terahertz-laser-imaging-chemical.html.
[38] Kazakov D, Piccardo M, Wang Y R, et al. Self-starting harmonic frequency comb generation in a quantum cascade laser[J]. Nature Photonics, 2017, 11(12):789-792.
[39] New terahertz imaging approach could speed up skin cancer detection[EB/OL]. (2017-8-17)[2017-12-10]. https://phys.org/news/2017-08-terahertz-imaging-approach-skin-cancer.html.
[40] Yabashi M, Tanaka H. The next ten years of X-ray science[J]. Nature Photonics, 2017, 11(1):12-14.
[41] Holler M, Guizarsicairos M, Tsai E H, et al. High-resolution non-destructive three-dimensional imaging of integrated circuits[J]. Nature, 2017, 543(7645):402-406.
[42] 3-D X-ray imaging makes the finest details of a computer chip visible[EB/OL]. (2017-03-16)[2017-12-10]. https://www.psi.ch/media/3-d-x-ray-imaging-makes-the-finest-detailsof-a-computer-chip-visible.
[43] Courtland R. X-rays map the 3D interior of integrated circuits[EB/OL]. (2017-05-17)[2017-12-10]. http://spectrum.ieee.org/nanoclast/semiconductors/processors/xray-ic-imaging.
[44] CISCO visual networking index:Forecast and methodology, 2016-2021[EB/OL]. (2017-09-15)[2017-12-10]. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visualnetworking-index-vni/complete-white-paper-c11-4813-60.html.
[45] Riesen N, Gross S, Love J D, et al. Monolithic mode-selective few-mode multicore fiber multiplexers[J]. Scientific Reports, 2017, 7(1):6971.
[46] Bezryadina A, Hansson T, Gautam R, et al. Nonlinear self-action of light through biological suspensions[J]. Physical Review Letters, 2017, 119(5):058101.
[47] Bacterial waveguides of light[EB/OL]. (2017-12-01)[2017-12-10]. https://www.osa-opn.org/home/articles/volume_28/december_2017/extras/bacterial_waveguides_of_light/.
[48] 杨栋, 刘力谱, 杨宏,等. 激光微纳3D打印[J]. 激光与光电子学进展, 2018, 55(1):011416. Yang Dong, Liu Lipu, Yang Hong, et al. Laser micro-nano 3D printing[J]. Laser & Optoelectronics Progress, 2018, 55(1):011416.
[49] 杨玥, 钱滨, 刘畅, 等. 激光3D打印玻璃研究现状及进展[J]. 激光与光电子学进展, 2018, 55(1):011406. Yang Yue, Qian Bin, Liu Chang, et al. 3D Laser Printing of glass-Present situation and research progress[J]. Laser & Optoelectronics Progress, 2018, 55(1):011406.
[50] Thiele S, Arzenbacher K, Gissibl T, et al. 3D-printed eagle eye:Compound microlens system for foveated imaging.[J]. Science Advances, 2017, 3(2):e1602655.
[51] Engineers 3-D print a "living tattoo":New technique 3-D prints programmed cells into living devices for first time[EB/OL]. (2017-12-05)[2017-12-10]. http://news.mit.edu/2017/engineers-3-d-print-living-tattoo-1205.
[52] Shusteff M, Browar A E M, Kelly B E, et al. One-step volumetric additive manufacturing of complex polymer structures[J]. Science Advances, 2017, 3(12):eaao5496.
[53] Zhang Y, Shin Y, Sung K, et al. 3D imaging of optically cleared tissue using a simplified CLARITY method and onchip microscopy[J]. Science Advances, 2017, 3(8):e1700553.
[54] Singh A K, Naik D N, Pedrini G, et al. Exploiting scattering media for exploring 3D objects[J]. Light Science & Applications, 2017, 6(2):e16219.
[55] Singh A K, Pedrini G, Takeda M, et al. Scatter-plate microscope for lensless microscopy with diffraction limited resolution[J]. Scientific Reports, 2017, 7(1):10687.
文章导航

/