从高效柔性有机半导体器件、高效有机太阳能电池、高效有机白光二极管、有机光伏器件的磁效应、有机自旋光伏器件设计等5个方面,盘点了2017年有机功能材料领域的重要研究进展;从有机电子学、有机光电子学和有机自旋电子学等多个角度,回顾了有机功能材料新奇的物理现象及原理;预测了该领域未来的发展方向。
In order to review the significant progress made in the field of organic functional materials in 2017, the latest research achievements are summarized in terms of organic semiconductor flexibility, organic solar cell efficiency, organic light emitting diode efficiency, magnetic effect of organic photovoltaic devices, and spin photovoltaic device design. The novel phenomenon and principle of organic functional materials in the field of organic electronics, organic optoelectronics and organic spintronics are reviewed and analyzed, and the future development in this field is also predicted.
[1] Chiang C K, Fincher C R J, Park Y W, et al. Electrical conductivity in doped polyacetylene[J]. Physical Review Letters, 1977, 39(17):1098-1101.
[2] Dediu V, Murgia M, Matacotta F C, et al. Room temperature spin polarized injection in organic semiconductor[J]. Solid State Communications, 2002, 122(3):181-184.
[3] Kienberger R, Goulielmakis E, Uiberacker M, et al. Atomic transient recorder[J]. Nature, 2004, 427(6977):817-821.
[4] Rao Y L, Chortos A, Pfattner R, et al. Stretchable self-healing polymeric dielectrics cross-linked through metal-ligand coordination[J]. Journal of the American Chemical Society, 2016, 138(18):6020-6027.
[5] Oh J Y, Rondeau G S, Chiu Y C, et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors[J]. Nature, 2016, 539(7629):411-415.
[6] Xu J, Wang S, Wang G N, et al. Highly stretchable polymer semiconductor films through the nanoconfinement effect[J]. Science, 2017, 355(6320):59-64.
[7] Zhao W, Li S, Yao H, et al. Molecular optimization enables over 13% efficiency in organic solar cells[J]. Journal of the American Chemical Society, 2017, 139(21):7148-7151.
[8] Xiao Z, Jia X, Ding L. Ternary organic solar cells offer 14% power conversion efficiency[J]. Science Bulletin, 2017(62):1562-1564.
[9] Kido J, Hongawa K, Okuyama K, et al. White light-emitting organic electroluminescent devices using the poly(N-vinylcarbazole) emitter layer doped with three fluorescent dyes[J]. Applied Physics Letters, 1994, 64(7):815-817.
[10] He Z, Zhao W, Lam J, et al. White light emission from a single organic molecule with dual phosphorescence at room temperature[J]. Nature Communications, 2017, 8(1):416.
[11] Wu S, Li S, Wang Y, et al. Organic light-emitting diodes:White organic LED with a luminous efficacy exceeding 100 lm·W-1 without light out-coupling enhancement techniques[J]. Advanced Functional Materials, 2017(27):1701314.
[12] Ren S, Wuttig M. Organic Exciton Multiferroics[J]. Advanced Materials 2012, 24(6):724-727.
[13] Wei Q, Gong M, Shastry T, et al. Charge-transfer induced magnetic field effects of nano-carbon heterojunctions[J]. Scientific Reports, 2015, 4(4):6126.
[14] Qin W, Jasion D, Chen X, et al. Charge-transfer magnetoelectrics of polymeric multiferroics[J]. Acs Nano, 2014, 8(4):3671-3677.
[15] Han S, Yang L, Gao K, et al. Spin polarization of excitons in organic multiferroic composites[J]. Scientific Reports, 2016(6):28656.
[16] Liu Y, Han S, Ma X, et al. Ferromagnetic mechanism in organic photovoltaic cells with closed-shell structures[J]. Scientific Reports, 2017, 7(1):8384.
[17] Sun X, Vélez S, Atxabal A, et al. A molecular spin-photovoltaic device[J]. Science, 2017, 357(6352):677-680.
[18] Qin W, Xu H, Hu B. Effects of spin states on photovoltaic actions in organo-metal halide perovskite solar cells based on circularly polarized photoexcitation[J]. Acs Photonics, 2017(4):2821-2827.
[19] Qin W, Xu B, Ren S. An organic approach for nanostructured multiferroics[J]. Nanoscale, 2015, 7(20):9122-9132.
[20] Qin W, Gong M, Chen X, et al. Multiferroicity of carbonbased charge-transfer magnets[J]. Advanced Materials, 2015, 27(4):734-739.