专题论文

可拉伸高分子材料接连突破,可穿戴电子设备前景可期——2017年高分子材料研发热点回眸

  • 胡建华
展开
  • 复旦大学高分子科学系, 上海 200433
胡建华,教授,研究方向为高分子化学与物理,电子信箱:hujh@fudan.edu.cn

收稿日期: 2017-12-22

  修回日期: 2018-01-02

  网络出版日期: 2018-01-30

基金资助

国家自然科学基金项目(51373035,51573030)

Hot spots of polymer science in 2017

  • HU Jianhua
Expand
  • Department of Macromolecular Science, Fudan University, Shanghai 200433, China

Received date: 2017-12-22

  Revised date: 2018-01-02

  Online published: 2018-01-30

摘要

高分子材料作为重要的新型全能材料,已广泛应用在人们生活的方方面面。2017年高分子科学领域硕果累累,超分子聚合物、石墨烯、高性能材料、纳米多功能材料等方向都炙手可热。本文遴选2017年可拉伸高分子半导体、柔性储能材料、不对称聚合物分子刷的高效精准制备、二氧化碳吸附、塑料回收再利用和毒品检测方面的高分子应用等方向取得的成果进行盘点。

本文引用格式

胡建华 . 可拉伸高分子材料接连突破,可穿戴电子设备前景可期——2017年高分子材料研发热点回眸[J]. 科技导报, 2018 , 36(1) : 53 -62 . DOI: 10.3981/j.issn.1000-7857.2018.01.006

Abstract

As an irreplaceable material, polymer has been widely used in all aspects of our life. With the joint efforts of researchers, significant achievements have been accomplished in supramolecular polymer, graphene, high-performance materials and nanomultifunctional materials of polymer science. This paper makes a brief introduction to several outstanding results accomplished in 2017, including stretchable polymer semiconductor, flexible energy storage materials, efficient and accurate preparation of asymmetric polymer brushes, carbon dioxide adsorption, plastic recycling and reuse,and application of polymers in drug detection. Among them the research in extensible polymer,in particular, has made great breakthroughs in the year and seems soon applicable to use in wearable electronic equipment.

参考文献

[1] Kim DH, Lu N, Ma R, et al. Epidermal electronics[J]. Science, 2011, 333(6044):838-843.
[2] Kaltenbrunner M, Sekitani T, Reeder J, et al. An ultra-lightweight design for imperceptible plastic electronics.[J]. Nature, 2013, 499(7459):458-63.
[3] Liu Z, Wang X, Qi D, et al. High-Adhesion Stretchable Electrodes Based on Nanopile Interlocking[J]. Advanced Materials, 2017, 29(2):1603382.
[4] Oh J Y, Rondeau-Gagné S, Chiu Y C, et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors[J]. Nature, 2016, 539(7629):411-415.
[5] Xu J, Wang S, Wang G, et al. Highly stretchable polymer semiconductor films through the nanoconfinement effect[J]. Science, 2017, 355(6320):59-64.
[6] Guo Y, Li W, Yu H, et al. Flexible asymmetric supercapacitors via spray coating of a new electrochromic donor-acceptor polymer[J]. Advanced Energy Materials, 2016, 7(2):1601623.
[7] Cheng Z, Zhu X, Fu G, et al. Dual-brush-type amphiphilic triblock copolymer with intact epoxide functional groups from consecutive RAFT polymerizations and ATRP[J]. Macromolecules, 2005, 38(16):7187-7192.
[8] Zhang Y, Yin Q, Lu H, et al. PEg-polypeptide dual brush block copolymers:synthesis and application in nanoparticle surface PEGylation[J]. Acs Macro Letters, 2013, 2(9):809-813.
[9] Li Y, Themistou E, Zou J, et al. Facile synthesis and visualization of janus double-brush copolymers[J]. Acs Macro Letters, 2011, 1(1):52-56.
[10] Xu B, Feng C, Huang X. A versatile platform for precise synthesis of asymmetric molecular brush in one shot[J]. Nature Communications, 2017, 8(1):333.
[11] Geyer F, Schönecker C, Butt H, et al. Enhancing CO2 Capture using Robust Superomniphobic Membranes[J]. Advanced Materials, 2017, 29(5):1603524.
[12] Harlick P, Sayari A. Applications of Pore-Expanded Mesoporous Silicas. 3. Triamine Silane Grafting for Enhanced CO2 Adsorption[J]. Industrial & Engineering Chemistry Research, 2006, 45(9):3248-3255.
[13] Radosz M, Hu X, Krutkramelis K, et al. Flue-gas carbon capture on carbonaceous sorbents:Toward a low-cost multifunctional carbon filter for "green" energy producers[J]. Industrial & Engineering Chemistry Research, 2008, 47(10):3783-3794.
[14] Chen K J, Madden D G, Pham T, et al. Tuning pore size in square-lattice coordination networks for size-selective sieving of CO2[J]. Angewandte Chemie, 2016, 55(35):10268-10272.
[15] Qin L, Xu G J, Yao C, et al. Conjugated microporous polymer networks with adjustable microstructures for high CO2 uptake capacity and selectivity[J]. Chemical Communications, 2016, 52(85):12602-12605.
[16] Abdelwahab M A, Martinelli E, Alderighi M, et al. Poly[(R)-3-hydroxybutyrate]]/Poly(styrene) blends compatibilized withthe relevant block copolymer[J]. Journal of Polymer Science Part A:Polymer Chemistry, 2012, 50(24):5151-5160.
[17] Bettini S H P, Mello L C, Munoz P A R, et al. Grafting of maleic anhydride onto polypropylene, in the presence andabsence of styrene, for compatibilization of poly(ethyleneterephthalate)/(ethylene-propylene) blends[J]. Journal of Applied Polymer Science, 2013, 127(2):1001-1009.
[18] Gomes A C O, Soares B G, Oliveira M G, et al. Influence of compatibilizer content on PA/NBR blends properties:Unusual characterization and evaluation methods[J]. Journal of Applied Polymer Science, 2013, 127(3):2192-2200.
[19] Colbeaux A, Fenouillot F, Gerard J, et al. Compatibilization of a polyolefin blend through covalent and ionic coupling of grafted polypropylene and polyethylene. I. rheological, thermal, and mechanical properties[J]. Journal of Applied Polymer Science, 2005, 95(2):312-320.
[20] Eagan J M, Xu J, Di Girolamo R, et al. Combining polyethylene and polypropylene:Enhanced performance with PE/iPP multiblock polymers[J]. Science, 2017, 355(6327):814-816.
[21] Baumes L A, Sogo M B, Montes-Navajas P, et al. A colorimetric sensor array for the detection of the date-rape drugg-hydroxybutyric acid (GHB):A supramolecular approach[J]. Chemistry A European Journal, 2010, 16(15):4489-4495.
[22] Moreno D, Grenu B D, Garcia B, et al. A turn-on fluorogenic probe for detection of MDMA from ecstasy tablets[J]. Chemical Communications, 2012, 48(24):2994-2996.
[23] Masseroni D, Biavardi E, Genovese D, et al. A fluorescent probe for ecstasy[J]. Chemical Communications, 2015, 51(64):12799-12802.
[24] Shcherbakova E G, Zhang B, Gozem S, et al. Supramolecular Sensors for Opiates and Their Metabolites[J]. Journal of the American Chemical Society, 2017, 139(42):14954-14960.
文章导航

/