专题论文

2017年脑机接口研发热点回眸

  • 张丹 ,
  • 陈菁菁 ,
  • 王毅军
展开
  • 1. 清华大学社会科学学院心理学系, 北京 100084;
    2. 清华大学医学院生物医学工程系, 北京 100084;
    3. 中国科学院半导体研究所, 北京 100083
张丹,特别研究员,研究方向为脑机接口与社会神经科学,电子信箱:dzhang@tsinghua.edu.cn;陈菁菁,博士研究生,研究方向为脑机接口,电子信箱:chen-jj15@mails.tsinghua.edu.cn

收稿日期: 2017-12-25

  修回日期: 2018-01-02

  网络出版日期: 2018-01-30

基金资助

国家重点研发计划项目(2016YFB1001200);国家自然科学基金重点项目(U1736220);国家社会科学基金重大项目(17ZDA323)

An overeview of the forntier on brain-computer interface technology in 2017

  • ZHANG Dan ,
  • CHEN Jingjing ,
  • WANG Yijun
Expand
  • 1. Department of Psychology, Tsinghua University, Beijing 100084, China;
    2. Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China;
    3. Institute of Semiconductors, Chinese Academy of Science, Beijing 100083, China

Received date: 2017-12-25

  Revised date: 2018-01-02

  Online published: 2018-01-30

摘要

脑机接口通过解码人类思维活动过程中的脑神经活动信息,构建人脑与外部世界的直接信息传输通路。近年来脑机接口领域发展已经步入快车道,相关技术正在走向成熟,并得到工业界越来越多的关注。本文盘点了2017年度脑机接口在应用系统实现方面所取得的重要成果,介绍了其应用关键技术研究的新进展,展望了脑机接口研发的未来趋势。

关键词: 脑机接口; 交流; 控制

本文引用格式

张丹 , 陈菁菁 , 王毅军 . 2017年脑机接口研发热点回眸[J]. 科技导报, 2018 , 36(1) : 104 -109 . DOI: 10.3981/j.issn.1000-7857.2018.01.012

Abstract

The brain-computer interface (BCI) establishes a direct communication pathway between human brain and the external world by real-time decoding the brain activities accompanying the thinking process. BCI is rapidly developing and maturing, receiving an increasing interest from the industry. In this review, we introduce the system-level achievement and key technological progresses in the past 2017, with future development trend prospected as well.

参考文献

[1] McFarland D J, Wolpaw J R. EEG-based brain-computer interfaces[J]. Current Opinion in Biomedical Engineering, 2017, 4(Supplement C):194-200.
[2] Lebedev M A, Nicolelis M A L. Brain-machine interfaces:Past, present and future.[J]. Trends in Neurosciences, 2006, 29(9):536-546.
[3] Gao S. Visual and auditory brain-computer interfaces[J]. IEEE Transactions on Biomedical Engineering, 2014, 61(5):1436-1447.
[4] Vidal J J. Toward direct brain-computer communication[J]. Annual Review of Biophysics and Bioengineering, 1973, 2(1):157-180.
[5] Neuralink[EB/OL].[2017-12-20]. https://www.neuralink.com/.
[6] Statt N. Facebook is working on a way to let you type with your brain[EB/OL].[2017-04-19]. https://www.theverge.com/2017/4/19/15360798/facebook-brain-computer-interface-ai-ar-f8-2017.
[7] Chen X G, Wang Y J, Nakanishi M, et al. High-speed spelling with a noninvasive brain-computer interface[J]. Proceedings of the National Academy of Sciences, 2015, 112(44):E6058-E6067.
[8] Pandarinath C, Nuyujukian P, Blabe C H, et al. High performance communication by people with paralysis using an intracortical brain-computer interface[J]. eLife, 2017, doi:10.7554/eLife.18554.
[9] Ajiboye A B, Willett F R, Young D R, et al. Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia:A proof-of-concept demonstration[J]. Lancet, 2017, 389(10081):1821-1830.
[10] Yanagisawa T, Fukuma R, Seymour B, et al. Induced sensorimotor brain plasticity controls pain in phantom limb patients[J]. Nature Communications, 2016, 7:13209.
[11] 2017-BCI Award[EB/OL].[2017-12-20]. http://www.bci-award.com/2017.
[12] Chaudhary U, Xia B, Silvoni S, et al. Brain-computer interface-based communication in the completely locked-in state[J]. Plos Biology, 2017, 15(1):e1002593.
[13] Luhmann A V, Wabnitz H, Sander T, et al. M3BA:A Mobile, Modular, Multimodal Biosignal Acquisition architecture for miniaturized EEG-NIRS based hybrid BCI and monitoring[J]. IEEE Transactions on Biomedical Engineering, 2017, 64(6):1199-1210.
[14] Wang Y T, Nakanishi M, Wang Y, et al. An online braincomputer interface based on ssveps measured from non-hairbearing areas[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(1):14-21.
[15] Farwell L A, Donchin E. Talking off the top of your head:Toward a mental prosthesis utilizing event-related brain potentials[J]. Electroencephalography and Clinical Neurophysiology, 1988, 70(6):510-523.
[16] Nakanishi M, Wang Y, Chen X, et al. Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis[J]. IEEE Transactions on Biomedical Engineering, 2018, 65(1):104-112.
[17] Bin G, Gao X, Wang Y, et al. VEP-based brain-computer interfaces:time, frequency, and code modulations[Research Frontier] [J]. Computational Intelligence Magazine IEEE, 2009, 4(4):22-26.
[18] Maye A, Zhang D, Engel A. Utilizing retinotopic mapping for a multi-target SSVEP BCI with a single flicker frequency[J]. IEEE Transactions on Neural Systems & Rehabilitation Engineering, 2017, 25(7):1026-1036.
[19] Chen J, Zhang D, Engel A K, et al. Application of a singleflicker online SSVEP BCI for spatial navigation[J]. Plos One, 2017, 12(5):e0178385.
[20] Qiu Z, Allison B Z, Jin J, et al. Optimized motor imagery paradigm based on imagining Chinese characters writing movement[J]. IEEE Transactions on Neural Systems & Rehabilitation Engineering A Publication of the IEEE Engineering in Medicine & Biology Society, 2017, 25(7):1009-1017.
[21] Schirrmeister R T, Springenberg J T, Fiederer L D J, et al. Deep learning with convolutional neural networks for EEG decoding and visualization[J]. Human Brain Mapping, 2017, 38(11):5391-5420.
[22] Hosseini M P, Pompili D, Elisevich K, et al. Optimized deep learning for EEG big data and seizure prediction BCI via internet of things[J]. IEEE Transactions on Big Data, 2017, 3(4):392-404.
[23] Zhang Y, Wang Y, Zhou G, et al. Multi-kernel extreme learning machine for EEG classification in brain-computer interfaces[J]. Expert Systems with Applications, 2018, 96:302-310.
[24] Tang H, Liu W, Zheng W L, et al. Multimodal emotion recognition using deep neural networks[C]//24th International Conference on Neural Information Processing. Springer, 2017:811-819.
[25] Liu M, Wu W, Gu Z, et al. Deep learning based on batch normalization for P300 signal detection[J]. Neurocomputing, 2018, 275(Supplement C):288-297.
[26] Lu N, Li T, Ren X, et al. A deep learning scheme for motor imagery classification based on restricted boltzmann machines[J]. IEEE Transactions on Neural Systems & Rehabilitation Engineering A Publication of the IEEE Engineering in Medicine & Biology Society, 2017, 25(6):56-576.
[27] Wang Y, Chen X, Gao X, et al. A benchmark dataset for SSVEP-based brain-computer interfaces[J]. IEEE Transactions on Neural Systems & Rehabilitation Engineering A Publication of the IEEE Engineering in Medicine & Biology Society, 2017, 25(10):1746-1752.
[28] Shin J, Von L A, Blankevtz B, et al. Open access dataset for EEG + NIRS single-trial classification[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(10):1735-1745.
[29] Yuste R, Goering S. Four ethical priorities for neurotechnologies and AI[J]. Nature, 2017, 551(7679):159-163.
[30] Strickland E. DARPA wants brain implants that record from 1 million neurons[EB/OL].[2017-07-10]. https://spectrum.ieee.org/the-human-os/biomedical/devices/darpa-wants-brain-implants-that-record-from-1-million-neurons.
[31] Müller K R, Carmena J M. Editorial IEEE Brain Initiative Special issue on BMI/BCI Systems[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(10):1685-1686.
文章导航

/