[1] Denecke S, Fusetto R, Batterham P. Describing the role of Drosophila melanogaster ABC transporters in insecticide biology using CRISPR-Cas9 knockouts[J]. Insect Biochemistry and Molecular Biology, 2017, 91:1-9.
[2] Wang J, Wang H D, Liu S Y, et al. Gene HaABCA2 confers resistance to Bacillus thuringiensis Cry2A toxins[J]. Insect Biochemistry and Molecular Biology, 2017, 87:147-153.
[3] Douris V, Papapostolou K M, Ilias A, et al.Investigation of the contribution of RyR target-site mutations in diamide resistance by CRISPR/Cas9 genome modification in Drosophila[J]. Insect Biochemistry and Molecular Biology, 2017, 87:127-135.
[4] Zuo Y Y, Wang H, Xu Y J, et al. CRISPR/Cas9 mediated G4946E substitution in the ryanodine receptor of Spodoptera exigua confers high levels of resistance to diamide insecticides[J]. Insect Biochemistry and Molecular Biology, 2017, 89:79-85.
[5] Lin L Y, Liu C, Qin J, et al. Crystal structure of ryanodine receptor N-terminal domain from Plutella xylostella reveals two potential species-specific insecticide-targeting sites[J]. Insect Biochemistry and Molecular Biology, 2017, 92:73-83.
[6] Roditakis E, Steinbach D, Moritz G, et al. Ryanodine receptor point mutations confer diamide insecticide resistance in tomato leafminer, Tuta absoluta (Lepidoptera:Gelechiidae)[J]. Insect Biochemistry and Molecular Biology, 2017, 80:11-20.
[7] Chen M L, Du Y Z, Nomura Y, et al. Mutations of two acidic residues at the cytoplasmic end of segment ⅢS6 of an insect sodium channel have distinct effects on pyrethroid resistance[J]. Insect Biochemistry and Molecular Biology, 2017, 82:1-10.
[8] Wu S Y, Nomura Y, Du Y Z, et al. Molecular basis of selective resistance of the bumblebee BiNav1 sodium channel to tau-fluvalinate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(49):12922-12927.
[9] Wang X L, Puinean A M, O'Reilly A O, et al. Mutations on M3 helix of Plutella xylostella glutamate-gated chloride channel confer unequal resistance to abamectin by two different mechanisms[J]. Insect Biochemistry and Molecular Biology, 2017, 86:50-57.
[10] Chen X W, Li F, Chen A Q, et al. Both point mutations and low expression levels of the nicotinic acetylcholine receptor β 1 subunit are associated with imidacloprid resistance in an Aphis gossypii (Glover) population from a Bt cotton field in China[J]. PesticideBiochemistry and Physiology, 2017, 141:1-8.
[11] Bao H B, Meng X K, Liu Z W. Spider acetylcholine binding proteins:An alternative model to study the interaction between insect nAChRs and neonicotinoids[J]. Insect Biochemistry and Molecular Biology, 2017, 90:82-89.
[12] Sun H N, Buchon N, Scott J G. Mdr65 decreases toxicity of multiple insecticides in Drosophilamelanogaster[J]. Insect Biochemistry and Molecular Biology, 2017, 89:11-16.
[13] Pan J, Yang C, Liu Y, et al. Novel CYP6D1 and voltage gated sodium channel alleles of the house fly (Musca domestica) and their roles in pyrethroid resistance[J]. Pest Management Science, 2017, doi:10.1002/ps.4798.
[14] Shi Y, Wang H D, Liu Z, et al. Phylogenetic and functional characterization of ten P450 genes from the CYP6AE subfamily of Helicoverpa armigera involved in xenobiotic metabolism[J]. Insect Biochemistry and Molecular Biology, 2017, doi:10.1016/j.ibmb.2017.12.006.
[15] Fan Y J, Shi X Y. Characterization of the metabolic transformation of thiamethoxam to clothianidin in Helicoverpa armigera larvae by SPE combined UPLC-MS/MS and its relationship with the toxicity of thiamethoxam to Helicoverpa armigera larvae[J]. Journal of Chromatography B, 2017, 1061/1062:349-355.
[16] Gong Y H, Ai G M, Li M, et al. Functional characterization of carboxylesterase gene mutations involved in Aphis gossypii resistance to organophosphate insecticides[J]. Insect Molecular Biology, 2017, 26(6):702-714.
[17] Chen C Y, Liu Y, Shi X Y, et al. Elevated carboxylesterase activity contributes to the lambda-cyhalothrin insensitivity in quercetin fed Helicoverpa armigera (Hübner)[J]. Plos One, 2017, https://doi.org/10.1371/journal.pone. 0183111.
[18] Chen C Y, Han P, Yan W Y, et al. Uptake of quercetin reduces larval sensitivity to lambda-cyhalothrin in Helicoverpa armigera[J]. Journal of Pest Science, https://doi.org/10.1007/s10340-017-0933-1.
[19] He C, Xie W, Yang X, et al. Identification of glutathione Stransferases in Bemisia tabaci (Hemiptera:Aleyrodidae) and evidence that GSTd7 helps explain the difference in insecticide susceptibility between B. tabaci Middle East-Minor Asia 1 and Mediterranean[J]. Insect Molecular Biology, 2017, doi:10.1111/imb.12337.
[20] Huseth A S, D'Ambrosio D A, Kennedy G G. Responses of neonicotinoid resistant and susceptible Frankliniella fusca life stages to multiple insecticide groups in cotton[J]. Pest Management Science, 2017, 73(10):2118-2130.
[21] Sun H, Pu J, Chen F, et al. Multiple ATP-binding cassette transporters are involved in insecticide resistance in the small brown planthopper, Laodelphax striatellus[J]. Insect Molecular Biology, 2017, 26(3):343-355.
[22] Kasai S, Sun H, Scott J G. Diversity of knockdown resistance alleles in a single house fly population facilitates adaptation to pyrethroid insecticides[J]. Insect Molecular Biology, 2017, 26(1):13-24.
[23] Pignatelli P, Ingham V A, Balabanidou V, et al. The Anopheles gambiae ATP-binding cassette transporter family:phylogenetic analysis and tissue localization provide clues on function and role in insecticide resistance[J]. Insect Molecular Biology, 2017, doi:10.1111/imb.1235.
[24] Bajda S, Dermauw W, Panteleri R, et al. A mutation in the PSST homologue of complex I (NADH:ubiquinone oxidoreductase) from Tetranychus urticae is associated with resistance to METI acaricides[J]. Insect Biochemistry and Molecular Biology, 2017, 80:79-90.
[25] Wang S L, Zhang Y J, Yang X, et al. Resistance Monitoring for Eight Insecticides on the Sweetpotato Whitefly (Hemiptera:Aleyrodidae) in China[J]. Journal of Economic Entomology, 2017,110(2):660-666.
[26] Chen C Y, ShiX Y, DesneuxN, et al. Detection of insecticide resistance in Bradysia odoriphaga Yang et Zhang (Diptera:Sciaridae) in China[J]. Ecotoxicology, 2017, doi:10.1007/s10646-017-1817-0.
[27] Yang C, Huang Z, Li M, et al. RDL mutations predict multiple insecticide resistance in Anopheles sinensis in Guangxi, China[J]. Malaria Iournal, 2017, 16(1):482-494.
[28] Kalsi M, Palli S R. Cap n collar transcription factor regulates multiple genes coding for proteins involved in insecticide detoxification in the red flour beetle, Tribolium castaneum[J]. Insect Biochemistry and Molecular Biology, 2017, 90:43-52.
[29] Kalsi M, Palli S R.Transcription factor cap n collar C regulates multiple cytochrome P450 genes conferring adaptation to potato plant allelochemicals and resistance to imidacloprid in Leptinotarsa decemlineata (Say)[J]. Insect Biochemistry and Molecular Biology, 2017, 83:1-12.
[30] Peng T, Chen X, Pan Y, et al. Transcription factor aryl hydrocarbon receptor/aryl hydrocarbon receptor nuclear translocator is involved in regulation of the xenobiotic tolerance-related cytochrome P450 CYP6DA2 in Aphis gossypii Glover[J]. Insect Molecular Biology, 2017, 26(5):485-495.
[31] Li J H, Ma Y M, Yuan W L, et al. FOXA transcriptional factor modulates insect susceptibility to Bacillus thuringiensis Cry1Ac toxin by regulating the expression of toxin-receptor ABCC2 and ABCC3 genes[J]. Insect Biochemistry and Molecular Biology, 2017, 88:1-11.
[32] Guo Q, Huang Y, Zou F F, et al. The role of miR-2~13~71 cluster in resistance to deltamethrin in Culex pipiens pallens[J]. Insect Biochemistry and Molecular Biology, 2017, 84:15-22.
[33] Ma K S, Li F, Liang P Z, et al. RNA interference of Dicer-1 and Argonaute-1 increasing the sensitivity of Aphis gossypii Glover (Hemiptera:Aphididae) to plant allelochemical[J]. Pesticide Biochemistry and Physiology, 2017, 138:71-75.
[34] Ma K S, Li F, Liu Y, et al. Identification of microRNAs and their response to the stress of plant allelochemicals in Aphis gossypii (Hemiptera:Aphididae)[J]. BMC Molecular Biol, 2017, 18:5.
[35] Yang Z Z, Xia J X, Pan H P, et al. Genome-Wide Characterization and Expression Profiling of Sugar Transporter Family in the Whitefly, Bemisia tabaci (Gennadius) (Hemiptera:Aleyrodidae)[J]. Frontiers in Physiology, 2017, 8:322.
[36] Xia J X, Yang Z Z, Gong C, et al. Genome-wide Identification and Expression Analysis of Amino Acid Transporters in the Whitefly, Bemisia tabaci (Gennadius)[J]. Int J Biol Sci, 2017, 13:735-747.
[37] Tian L X, Song T X, He R J, et al. Genome-wide analysis of ATP-binding cassette (ABC) transporters in the sweetpotato whitefly, Bemisia tabaci[J]. BMC Genomics, 2017, 18:330.
[38] Zhu B, Xu M Y, Shi H Y, et al. Genome-wide identification of lncRNAs associated with chlorantraniliprole resistance in diamondback moth Plutella xylostella (L.)[J]. BMC Genomics, 2017, 18:380.
[39] Liu F L, Chen C, Xiao H M, et al. Genome-wide identification of long non-coding RNA genes and their association with insecticide resistance and metamorphosis in diamondback moth, Plutella xylostella[J]. Scientific Reports, 2017, 7(1):15870.
[40] Zhu B, Li X X, Liu Y, et al. Global identification of microRNAs associated with chlorantraniliprole resistance in diamondback moth Plutella xylostella (L.)[J]. Scientific Reports, 2017, 7:40713.
[41] Yuan Y Y, Li M, Fan F, et al. Comparative transcriptomic analysis of larval and adult Malpighian tubules from the cotton bollworm Helicoverpa armigera[J]. Insect science, 2017, doi:10.1111/1744-7917.12561.
[42] Rand E E, Human H, Smit S, et al. Proteomic and metabolomic analysis reveals rapid and extensive nicotine detoxification ability in honey bee larvae[J]. Insect Biochemistry and Molecular Biology, 2017, 82:41-51.