专题论文

2017年昆虫毒理学热点回眸

  • 史雪岩
展开
  • 中国农业大学植物保护学院, 北京 100193
史雪岩,副教授,研究方向为昆虫毒理学、农药学,电子信箱:shixueyan@cau.edu.cn

收稿日期: 2017-12-28

  修回日期: 2018-01-03

  网络出版日期: 2018-01-30

Review on research progresses of insect toxicology in 2017

  • SHI Xueyan
Expand
  • College of Plant Protection, China Agricultural University, Beijing 100193, China

Received date: 2017-12-28

  Revised date: 2018-01-03

  Online published: 2018-01-30

摘要

从基因编辑技术在昆虫毒理学研究中的应用、杀虫剂作用机制及抗性机制研究、昆虫抗药性的分子调控机制研究、昆虫毒理相关的基因组学研究等方面,综述了2017年昆虫毒理学的主要研究进展,并展望了昆虫毒理学研究的新方向、害虫抗药性治理的新策略。

本文引用格式

史雪岩 . 2017年昆虫毒理学热点回眸[J]. 科技导报, 2018 , 36(1) : 153 -162 . DOI: 10.3981/j.issn.1000-7857.2018.01.016

Abstract

Insect toxicology research is very important for the development of new insecticides and the management of insect resistance. This article reviews the 2017 progresses on the application of gene editing technology in insect toxicology research, mode of action and resistance mechanism of insecticides, molecular regulation mechanism of insect resistance, and insecticide toxicology related genomics of insects. The future of systematic characterization of toxicology-related genes function of insects, further understanding of the insect toxicology, and developing new management tactics for insect resistance based on the results of insect toxicology research are also prospected.

参考文献

[1] Denecke S, Fusetto R, Batterham P. Describing the role of Drosophila melanogaster ABC transporters in insecticide biology using CRISPR-Cas9 knockouts[J]. Insect Biochemistry and Molecular Biology, 2017, 91:1-9.
[2] Wang J, Wang H D, Liu S Y, et al. Gene HaABCA2 confers resistance to Bacillus thuringiensis Cry2A toxins[J]. Insect Biochemistry and Molecular Biology, 2017, 87:147-153.
[3] Douris V, Papapostolou K M, Ilias A, et al.Investigation of the contribution of RyR target-site mutations in diamide resistance by CRISPR/Cas9 genome modification in Drosophila[J]. Insect Biochemistry and Molecular Biology, 2017, 87:127-135.
[4] Zuo Y Y, Wang H, Xu Y J, et al. CRISPR/Cas9 mediated G4946E substitution in the ryanodine receptor of Spodoptera exigua confers high levels of resistance to diamide insecticides[J]. Insect Biochemistry and Molecular Biology, 2017, 89:79-85.
[5] Lin L Y, Liu C, Qin J, et al. Crystal structure of ryanodine receptor N-terminal domain from Plutella xylostella reveals two potential species-specific insecticide-targeting sites[J]. Insect Biochemistry and Molecular Biology, 2017, 92:73-83.
[6] Roditakis E, Steinbach D, Moritz G, et al. Ryanodine receptor point mutations confer diamide insecticide resistance in tomato leafminer, Tuta absoluta (Lepidoptera:Gelechiidae)[J]. Insect Biochemistry and Molecular Biology, 2017, 80:11-20.
[7] Chen M L, Du Y Z, Nomura Y, et al. Mutations of two acidic residues at the cytoplasmic end of segment ⅢS6 of an insect sodium channel have distinct effects on pyrethroid resistance[J]. Insect Biochemistry and Molecular Biology, 2017, 82:1-10.
[8] Wu S Y, Nomura Y, Du Y Z, et al. Molecular basis of selective resistance of the bumblebee BiNav1 sodium channel to tau-fluvalinate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(49):12922-12927.
[9] Wang X L, Puinean A M, O'Reilly A O, et al. Mutations on M3 helix of Plutella xylostella glutamate-gated chloride channel confer unequal resistance to abamectin by two different mechanisms[J]. Insect Biochemistry and Molecular Biology, 2017, 86:50-57.
[10] Chen X W, Li F, Chen A Q, et al. Both point mutations and low expression levels of the nicotinic acetylcholine receptor β 1 subunit are associated with imidacloprid resistance in an Aphis gossypii (Glover) population from a Bt cotton field in China[J]. PesticideBiochemistry and Physiology, 2017, 141:1-8.
[11] Bao H B, Meng X K, Liu Z W. Spider acetylcholine binding proteins:An alternative model to study the interaction between insect nAChRs and neonicotinoids[J]. Insect Biochemistry and Molecular Biology, 2017, 90:82-89.
[12] Sun H N, Buchon N, Scott J G. Mdr65 decreases toxicity of multiple insecticides in Drosophilamelanogaster[J]. Insect Biochemistry and Molecular Biology, 2017, 89:11-16.
[13] Pan J, Yang C, Liu Y, et al. Novel CYP6D1 and voltage gated sodium channel alleles of the house fly (Musca domestica) and their roles in pyrethroid resistance[J]. Pest Management Science, 2017, doi:10.1002/ps.4798.
[14] Shi Y, Wang H D, Liu Z, et al. Phylogenetic and functional characterization of ten P450 genes from the CYP6AE subfamily of Helicoverpa armigera involved in xenobiotic metabolism[J]. Insect Biochemistry and Molecular Biology, 2017, doi:10.1016/j.ibmb.2017.12.006.
[15] Fan Y J, Shi X Y. Characterization of the metabolic transformation of thiamethoxam to clothianidin in Helicoverpa armigera larvae by SPE combined UPLC-MS/MS and its relationship with the toxicity of thiamethoxam to Helicoverpa armigera larvae[J]. Journal of Chromatography B, 2017, 1061/1062:349-355.
[16] Gong Y H, Ai G M, Li M, et al. Functional characterization of carboxylesterase gene mutations involved in Aphis gossypii resistance to organophosphate insecticides[J]. Insect Molecular Biology, 2017, 26(6):702-714.
[17] Chen C Y, Liu Y, Shi X Y, et al. Elevated carboxylesterase activity contributes to the lambda-cyhalothrin insensitivity in quercetin fed Helicoverpa armigera (Hübner)[J]. Plos One, 2017, https://doi.org/10.1371/journal.pone. 0183111.
[18] Chen C Y, Han P, Yan W Y, et al. Uptake of quercetin reduces larval sensitivity to lambda-cyhalothrin in Helicoverpa armigera[J]. Journal of Pest Science, https://doi.org/10.1007/s10340-017-0933-1.
[19] He C, Xie W, Yang X, et al. Identification of glutathione Stransferases in Bemisia tabaci (Hemiptera:Aleyrodidae) and evidence that GSTd7 helps explain the difference in insecticide susceptibility between B. tabaci Middle East-Minor Asia 1 and Mediterranean[J]. Insect Molecular Biology, 2017, doi:10.1111/imb.12337.
[20] Huseth A S, D'Ambrosio D A, Kennedy G G. Responses of neonicotinoid resistant and susceptible Frankliniella fusca life stages to multiple insecticide groups in cotton[J]. Pest Management Science, 2017, 73(10):2118-2130.
[21] Sun H, Pu J, Chen F, et al. Multiple ATP-binding cassette transporters are involved in insecticide resistance in the small brown planthopper, Laodelphax striatellus[J]. Insect Molecular Biology, 2017, 26(3):343-355.
[22] Kasai S, Sun H, Scott J G. Diversity of knockdown resistance alleles in a single house fly population facilitates adaptation to pyrethroid insecticides[J]. Insect Molecular Biology, 2017, 26(1):13-24.
[23] Pignatelli P, Ingham V A, Balabanidou V, et al. The Anopheles gambiae ATP-binding cassette transporter family:phylogenetic analysis and tissue localization provide clues on function and role in insecticide resistance[J]. Insect Molecular Biology, 2017, doi:10.1111/imb.1235.
[24] Bajda S, Dermauw W, Panteleri R, et al. A mutation in the PSST homologue of complex I (NADH:ubiquinone oxidoreductase) from Tetranychus urticae is associated with resistance to METI acaricides[J]. Insect Biochemistry and Molecular Biology, 2017, 80:79-90.
[25] Wang S L, Zhang Y J, Yang X, et al. Resistance Monitoring for Eight Insecticides on the Sweetpotato Whitefly (Hemiptera:Aleyrodidae) in China[J]. Journal of Economic Entomology, 2017,110(2):660-666.
[26] Chen C Y, ShiX Y, DesneuxN, et al. Detection of insecticide resistance in Bradysia odoriphaga Yang et Zhang (Diptera:Sciaridae) in China[J]. Ecotoxicology, 2017, doi:10.1007/s10646-017-1817-0.
[27] Yang C, Huang Z, Li M, et al. RDL mutations predict multiple insecticide resistance in Anopheles sinensis in Guangxi, China[J]. Malaria Iournal, 2017, 16(1):482-494.
[28] Kalsi M, Palli S R. Cap n collar transcription factor regulates multiple genes coding for proteins involved in insecticide detoxification in the red flour beetle, Tribolium castaneum[J]. Insect Biochemistry and Molecular Biology, 2017, 90:43-52.
[29] Kalsi M, Palli S R.Transcription factor cap n collar C regulates multiple cytochrome P450 genes conferring adaptation to potato plant allelochemicals and resistance to imidacloprid in Leptinotarsa decemlineata (Say)[J]. Insect Biochemistry and Molecular Biology, 2017, 83:1-12.
[30] Peng T, Chen X, Pan Y, et al. Transcription factor aryl hydrocarbon receptor/aryl hydrocarbon receptor nuclear translocator is involved in regulation of the xenobiotic tolerance-related cytochrome P450 CYP6DA2 in Aphis gossypii Glover[J]. Insect Molecular Biology, 2017, 26(5):485-495.
[31] Li J H, Ma Y M, Yuan W L, et al. FOXA transcriptional factor modulates insect susceptibility to Bacillus thuringiensis Cry1Ac toxin by regulating the expression of toxin-receptor ABCC2 and ABCC3 genes[J]. Insect Biochemistry and Molecular Biology, 2017, 88:1-11.
[32] Guo Q, Huang Y, Zou F F, et al. The role of miR-2~13~71 cluster in resistance to deltamethrin in Culex pipiens pallens[J]. Insect Biochemistry and Molecular Biology, 2017, 84:15-22.
[33] Ma K S, Li F, Liang P Z, et al. RNA interference of Dicer-1 and Argonaute-1 increasing the sensitivity of Aphis gossypii Glover (Hemiptera:Aphididae) to plant allelochemical[J]. Pesticide Biochemistry and Physiology, 2017, 138:71-75.
[34] Ma K S, Li F, Liu Y, et al. Identification of microRNAs and their response to the stress of plant allelochemicals in Aphis gossypii (Hemiptera:Aphididae)[J]. BMC Molecular Biol, 2017, 18:5.
[35] Yang Z Z, Xia J X, Pan H P, et al. Genome-Wide Characterization and Expression Profiling of Sugar Transporter Family in the Whitefly, Bemisia tabaci (Gennadius) (Hemiptera:Aleyrodidae)[J]. Frontiers in Physiology, 2017, 8:322.
[36] Xia J X, Yang Z Z, Gong C, et al. Genome-wide Identification and Expression Analysis of Amino Acid Transporters in the Whitefly, Bemisia tabaci (Gennadius)[J]. Int J Biol Sci, 2017, 13:735-747.
[37] Tian L X, Song T X, He R J, et al. Genome-wide analysis of ATP-binding cassette (ABC) transporters in the sweetpotato whitefly, Bemisia tabaci[J]. BMC Genomics, 2017, 18:330.
[38] Zhu B, Xu M Y, Shi H Y, et al. Genome-wide identification of lncRNAs associated with chlorantraniliprole resistance in diamondback moth Plutella xylostella (L.)[J]. BMC Genomics, 2017, 18:380.
[39] Liu F L, Chen C, Xiao H M, et al. Genome-wide identification of long non-coding RNA genes and their association with insecticide resistance and metamorphosis in diamondback moth, Plutella xylostella[J]. Scientific Reports, 2017, 7(1):15870.
[40] Zhu B, Li X X, Liu Y, et al. Global identification of microRNAs associated with chlorantraniliprole resistance in diamondback moth Plutella xylostella (L.)[J]. Scientific Reports, 2017, 7:40713.
[41] Yuan Y Y, Li M, Fan F, et al. Comparative transcriptomic analysis of larval and adult Malpighian tubules from the cotton bollworm Helicoverpa armigera[J]. Insect science, 2017, doi:10.1111/1744-7917.12561.
[42] Rand E E, Human H, Smit S, et al. Proteomic and metabolomic analysis reveals rapid and extensive nicotine detoxification ability in honey bee larvae[J]. Insect Biochemistry and Molecular Biology, 2017, 82:41-51.
文章导航

/