专题论文

2017年水环境科学热点回眸

  • 程荣 ,
  • 石磊 ,
  • 郑祥
展开
  • 中国人民大学环境学院, 北京 100872
程荣,副教授,研究方向为环境纳米技术,电子信箱:chengrong@ruc.edu.cn

收稿日期: 2017-12-28

  修回日期: 2018-01-03

  网络出版日期: 2018-01-30

基金资助

国家自然科学基金项目(51778618)

Advances in water environmental science in 2017

  • CHENG Rong ,
  • SHI Lei ,
  • ZHENG Xiang
Expand
  • School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China

Received date: 2017-12-28

  Revised date: 2018-01-03

  Online published: 2018-01-30

摘要

2017年水环境科学领域的研究进展依旧可圈可点。本文以发表在国际顶级学术期刊或具有重要影响的研究成果为基础,按照水体类型的不同,从河流和流域、湖泊(水库)、海洋、地下水、冰川、湿地等天然水体以及水处理技术等几个方面,盘点了2017年水环境学领域的重要研究进展,为从整体上掌握水环境学的发展动态提供参考。

本文引用格式

程荣 , 石磊 , 郑祥 . 2017年水环境科学热点回眸[J]. 科技导报, 2018 , 36(1) : 176 -188 . DOI: 10.3981/j.issn.1000-7857.2018.01.018

Abstract

In 2017, the research progress in the field of water environment was still remarkable. We overview in this paper the significant developments and breakthroughs in 2017 according to the research findings published in theby top academic journals or the most influential achievements. Considering the various types of water bodies, the researches on natural waters are reviewed in terms of rivers and watersheds, lakes (reservoirs), oceans, groundwater, glaciers, and wetlands, as well as water treatment technologies. It is hoped that this paper can give valuable reference for understanding the advances of water environment science.

参考文献

[1] Xiong W, Ni P, Chen Y, et al. Zooplankton community struc ture along a pollution gradient at fine geographical scales in river ecosystems:The importance of species sorting over disper sal[J]. Molecular Ecology, 2017, 26(16):4351-4360.
[2] Xiong W, Li J, Chen Y, et al. Determinants of community struc ture of zooplankton in heavily polluted river ecosystems[J]. Sci entific Reports, 2016, 6:22043.
[3] Pennisi E. Africa's deadliest rapids give birth to new fish spe cies[J]. Science, 2017, doi:10.1126/science.aal0805.
[4] Li Y, Zhang C, Wang N, et al. Substantial inorganic carbon sink in closed drainage basins globally[J]. Nature Geoscience, 2017, 10:501-506.
[5] Latrubesse E M, Arima E Y, Dunne T, et al. Damming the riv ers of the Amazon basin[J]. Nature, 2017, 546:363-369.
[6] Tong Y D, Zhang W, Wang X J, et al. Decline in Chinese lake phosphorus concentration accompanied by shift in sources since 2006[J]. Nature Geoscience, 2017, 10:507-511.
[7] YanQ Y, Yu Y H, Feng W S, et al. Genetic diversity of plank ton community as depicted by PCR-DGGE fingerprinting and its relation to morphological composition and environmental fac tors in Lake Donghu[J]. Microbial Ecology, 2007, 54(2):290-297.
[8] Yu Y H, Yan Q Y, Feng W S. Spatiotemporal heterogeneity of plankton communities in Lake Donghu, China, as revealed by PCR-denaturing gradient gel electrophoresis and its relation to biotic and abiotic factors[J]. FEMS Microbiology Ecology, 2008, 63(3):328-337.
[9] Yan Q Y, Stegen J C, Yu Y H, et al. Nearly a decade-long re peatable seasonal diversity patterns of bacterioplankton commu nities in the eutrophic Lake Donghu (Wuhan, China)[J]. Molec ular Ecology, 2017, 26(14):3839-3850.
[10] Geyer R, Jambeck J R, Law K L. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017, 3(7):e1700782.
[11] Wang W F, NdunguA W, Li Z, et al. Microplastics pollution in inland freshwaters of China:A case study in urban surface waters of Wuhan, China[J]. Science of the Total Environment, 2017, 575:1369-1374.
[12] Di M X, Wang J. Microplastics in surface waters and sedi ments of the Three Gorges Reservoir, China[J]. Science of the Total Environment, 2017, 616-617:1620-1627.
[13] Ren J, Wang X P, Wang C F, et al. Atmospheric processes of organic pollutants over a remote lake on the central Tibetan Plateau:Implications for regional cycling[J]. Atmospheric Chemistry and Physics, 2017, 17:1401-1415.
[14] Tao Y Q, Yu J, Xue B, et al. Precipitation and temperature drive seasonal variation in bioaccumulation of polycyclic aro matic hydrocarbons in the planktonic food webs of a subtropi cal shallow eutrophic lake in China[J]. Science of the Total Environment, 2017, 583:447-457.
[15] Wang G J, ChengL J, Abraham J, et al. Consensuses and dis crepancies of basin-scale ocean heat content changes in dif ferent ocean analyses[J]. Climate Dynamics, 2017, doi:10.1007/s00382-017-3751-5.
[16] Ashton G V, Morley S A, Barnes D K A, et al. Warming by 1℃ drives species and assemblage level responses in antarcti ca's marine shallows[J]. Current Biology, 2017, 27(17):2698-2705.
[17] Hughes T P, Kerry J T, Wilson S K. Global warming and re current mass bleaching of corals[J]. Nature, 2017, 543:373-377.
[18] Decarlo T M, Cohen A L, Wong G T F, et al. Mass coral mor tality under local amplification of 2℃ ocean warming[J]. Sci entific Reports, 2017, 7:44586.
[19] Schmidtko S, Stramma L, Visbeck M. Decline in global ocean ic oxygen content during the past five decades[J]. Nature, 2017, 542:335-339.
[20] DeVries T, Holzer M, Primeau F. Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning[J]. Nature, 2017, 542:215-218.
[21] Hammill E, Johnson E, Atwood T B. Ocean acidification al ters zooplankton communities and increases top-down pres sure of a cubozoan predator[J]. Global Change Biology, 2018, 24(1):e128-e138.
[22] Marshall K N, Kaplan I C, Hodgson E E, et al. Risks of ocean acidification in the California Current food web and fisheries:Ecosystem model projections[J]. Global Change Biol ogy, 2017, 23(4):1525-1539.
[23] Hong H Z, Shen R, Zhang F T, et al. The complex effects of ocean acidification on the prominent N2-fixing cyanobacteri um Trichodesmium[J]. Science, 2017, 356(6337):527-531.
[24] Jamieson A J, Malkocs T, Piertney S B, et al. Bioaccumula tion of persistent organic pollutants in the deepest ocean fauna[J]. Nature Ecology & Evolution, 2017, doi:10.1038/s41559-016-0051.
[25] Lamb J B, van de Water J A J M, Bourne D G, et al. Sea grass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates[J]. Science, 2017, 366(6326):731-733.
[26] McCauley R D, Day R D, Swadling K M, et al. Widely used marine seismic survey air gun operations negatively impact zooplankton[J]. Nature Ecology & Evolution, 2017, doi:10.1038/s41559-017-0195.
[27] Cuthbert M O, Gleeson T, Reynolds S C, et al. Modelling the role of groundwater hydro-refugia in East African hominin evolution and dispersal[J]. Nature Communications, 2017, 8(15696):15696.
[28] Dalin C, Wada Y, Kastner T, et al. Groundwater depletion em bedded in international food trade[J]. Nature, 2017, 543(7647):700.
[29] Jasechko S, Perrone D, Befus K M, et al. Global aquifers dom inated by fossil groundwaters but wells vulnerable to modern contamination[J]. Nature Geoscience, 2017, 10(6):425-429.
[30] Pritchard H D. Asia's glaciers are a regionally important buf fer against drought[J]. Nature, 2017, 545(7653):169.
[31] Sun X J, Wang K, Kang S C, et al. The role of melting alpine glaciers in mercury export and transport:An intensive sam pling campaign in the Qugaqie Basin, inland Tibetan Plateau[J]. Environmental Pollution, 2017, 220B:936-945.
[32] Wang Y Y, Wang H, He J-S, et al. Iron-mediated soil car bon response to water-table decline in an alpine wetland[J]. Nature Communications, 2017, doi:10.1038/ncomms15972.
[33] Xiong Z, Guo L, Zhang Q, et al. Edaphic conditions regulate denitrification directly and indirectly by altering denitrifier abundance in wetlands along the Han River, China[J]. Envi ronmental Science & Technology, 2017, 51(10):5483.
[34] Zhang Z, Zimmermann N E, Stenke A, et al. Emerging role of wetland methane emissions in driving 21st century climate change[J]. PNAS, 2017, 114(36):9647-9652.
[35] Chen L, Shi G S, Shen J, et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing[J]. Na ture, 2017, 550:380-383.
[36] Ge J, Shi L-A, Wang Y-C, et al. Joule-heated graphenewrapped sponge enables fast clean-up of viscous crude-oil spill[J]. Nature Nanotechnology, 2017, 12:434-440.
[37] Zhou L, Tan Y, Ji D, et al. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation[J]. Science Advances, 2016, 2(4):e1501227.
[38] Zhou L, Tan Y, Wang J Y, et al. 3D self-assembly of alumini um nanoparticles for plasmon-enhanced solar desalination[J]. Nature Photonics, 2016, 10:393-398.
[39] Li X Q, Xu W C, Tang M Y, et al. Graphene oxide-based effi cient and scalable solar desalination under one sun with a confined 2D water path[J]. PNAS, 2016, 113(49):13953-13958.
[40] Li X Q, Lin R X, Ni G, et al. Three-dimensional artificial transpiration for efficient solar waste water treatment[J]. Na tional Science Review, 2017, doi:10.1093/nsr/nwx051.
[41] Kim H, Yang S, Rao S R, et al. Water harvesting from air with metal-organic frameworks powered by natural sunlight[J]. Science, 2017, 356(6336):430-434.
[42] Gentry R R, Froehlich H E, Grimm D, et al. Mapping the global potential for marine aquaculture[J]. Nature Ecology & Evolution, 2017, doi:10.1038/s41559-017-0257-9.
[43] Gill D A, Mascia M B, Ahmadia G N, et al. Capacity short falls hinder the performance of marine protected areas globally[J].Nature, 2017, 543(7647):665-669.
[44] Vesper I. Hawaii seeks to ban ‘reef-unfriendly’ sunscreen[J]. Nature, 2017, doi:10.1038/nature.2017.21332.
文章导航

/