作为“一带一路”沿线主要国家,中、蒙、俄3国共同组成中蒙俄经济走廊带。以中、蒙、俄能源效率为主要研究内容,利用2000—2014年3国能源和环境数据,考察3国能源利用和环境状况,运用结合窗口模型的超效率DEA(data envelopment analysis)模型测算包含碳排放约束的三国全要素能源效率,并回归分析其影响因素。能源效率研究结果表明,中国的能源消耗和CO2排放量均大于俄罗斯和蒙古国;中、蒙两国能源消费与CO2排放关系密切;2004—2009年俄罗斯的单要素和全要素能源效率均高于中国和蒙古国,而2010—2014年中国的单要素和全要素能源效率均高于俄罗斯和蒙古国。造成能效差异的主要原因为:经济发展、能源贸易增加对能源效率的提高有积极作用,煤炭等高耗能能源的投入及工业在产业中占比的增加对能源效率产生负向影响。
In this research, the energy efficiencies of China, Mongolia and Russia are analyzed for the period of 2000 to 2014. The conditions of energy utilization and carbon dioxide emission are investigated through the data from IEA and World Bank. The total factor energy efficiency is calculated with super SBM and window DEA model. Besides, regression analysis is used to identify the influencing factors. The result indicates that Chinese energy consumption and carbon dioxide emissions were higher than Russia and Mongolia. Chinese and Mongolia energy consumptions and carbon dioxide emissions were closely related. The energy efficiency in Russia from 2004 to 2009 was the highest while Chinese was the highest from 2009 to 2014. Moreover, the economic development and energy trade increment had positive effects on energy efficiency, whereas both input of high energy consumption and proportion of industrial would bring negative influences on energy efficiency.
[1] 刘卫东, 田锦尘, 欧晓理."一带一路"战略研究[M]. 北京:商务印书馆, 2017:282-300. Liu Weidong, Tian Jinchen, Ou Xiaoli. The research of "One Belt and One Road"[M]. Beijing:The Commercial Press, 2017:282-300.
[2] Patterson M G. What is energy efficiency:Concepts, indicators and methodological issues[J]. Energy Policy, 2007, 24(5):377-390.
[3] Yang S. On energy efficiency of DEA method based on environmental factors[J]. Contemporary Economy & Management, 2012, 2(2):57.
[4] Keehn B, Wagner J B, Tager Flusberg H, et al. Reduction of CO2, emission by improving energy use efficiency of greenhouse cucumber production using DEA approach[J]. Energy, 2013, 55(1):676-682.
[5] Hu J, Wang S. Total-factor energy efficiency of regions in China[J]. Energy Policy, 2006, 34(17):3206-3217.
[6] 吴利学. 中国能源效率波动:理论解释, 数值模拟及政策含义[J]. 经济研究, 2009(5):130-142. Wu Lixue. Energy efficiency fluctuations in China:Theoretical interpretation, numerical simulation and policy implications[J]. Economic Research Journal, 2009(5):130-142.
[7] Zhang X P, Cheng X M, Yuan J H, et al. Total-factor energy efficiency in developing countries[J]. Energy Policy, 2011, 39(2):644-650.
[8] 胡根华, 秦嗣毅."金砖国家"全要素能源效率的比较研究——基于DEA-Tobit模型[J]. 资源科学, 2012, 34(3):533-540. Hu Genhua, Qin Siyi. A comparative study on the total factor energy efficiency of the "BRICs":Based on the DEA-Tobit model[J]. Resources Science, 2012, 34(3):533-540.
[9] 刘明辉, 袁培. 中哈全要素能源效率比较研究——"一带一路"背景下的思考[J]. 山东工商学院学报, 2015, 29(6):43-48. Liu Minghui, Yuan Pei. A comparative study of total factor energy efficiency between China and Kazakhstan:Thinking under the "Belt and Road Initiative" background[J]. Journal of Shandong Institute of Business and Technology, 2015, 29(6):43-48.
[10] de Castro Camioto F, Moralles H F, Mariano E B, et al. Energy efficiency analysis of G7 and BRICS considering total-factor structure[J]. Journal of Cleaner Production, 2016, 122:67-77.
[11] 岳立, 杨帆."丝绸之路经济带"框架下中国与中亚五国能源效率评价——基于CCR-BCC和Malmquist指数分析方法的DEA-Tobit模型[J]. 统计与信息论坛, 2016, 31(6):37-43. Yue Li, Yang Fan. Energy efficiency evaluation of China and the five Central Asian countries under the framework of "the Silk Road Economic Belt":A DEA-Tobit model based on the CCR-BCC and Malmquist index analysis methods[J]. Statistics & Information Forum, 2016, 31(6):37-43.
[12] Tone K. A slacks-based measure of efficiency in data envelopment analysis[J]. European Journal of Operational Research, 2001, 130(3):498-509.
[13] Cooper W W, Seiford L M, Tone K. Introduction to data envelopment analysis and its uses:With DEA-solver software and references[M]. New York:Springer Science & Business Media, 2006.
[14] Charnes A, Cooper W W, Lewin A Y, et al. Extensions to DEA models[M]//Data envelopment analysis:Theory, methodology, and applications. Springer Netherlands, 1994:49-61.
[15] Yang H, Pollitt M. The necessity of distinguishing weak and strong disposability among undesirable outputs in DEA:Environmental performance of Chinese coal-fired power plants[J]. Energy Policy, 2010, 38(8):4440-4444.
[16] Wang Z H, Zeng H L, Wei Y M, et al. Regional total factor energy efficiency:An empirical analysis of industrial sector in China[J]. Applied Energy, 2012, 97:115-123.
[17] 孙广生, 黄祎, 田海峰, 等. 全要素生产率, 投入替代与地区间的能源效率[J]. 经济研究, 2012(9):99-112. Sun Guangsheng, Huang Yi, Tian Haifeng, et al. Total factor productivity(TFP), investment substitution and energy efficiency between regions[J]. Economic Research Journal, 2012(9):99-112.
[18] Feenstra R C, Inklaar R, Timmer M. The next generation of the penn world table[J]. The American Economic Review, 2015, 105(10):3150-3182.
[19] 世界银行公开数据[EB/OL].[2017-11-12]. https://data.worldbank.org.cn. The world bank database[EB/OL].[2017-11-12]. https://data.worldbank.org.cn.
[20] International Energy Agency(IEA). Energy balance flows[EB/OL].[2017-11-01]. http://www.iea.org/statistics/statisticssearch/report/?country=CHINA&product=balances&year=2012.
[21] 谢秀梅. 全要素能源效率的影响因素分析与区域比较[D]. 广州:暨南大学, 2015. Xie Xiumei. The influence factors of the total-factor energy efficiency and regional comparison[D]. Guangzhou:Jinan University, 2015.
[22] 王兆华, 丰超. 中国区域全要素能源效率及其影响因素分析——基于2003-2010年的省际面板数据[J]. 系统工程理论与实践, 2015, 35(6):1361-1372. Wang Zhaohua, Feng Chao. Analysis of regional total factor energy efficiency and its influencing factors in China:Based on the interprovincial panel data from 2003 to 2010[J]. System Engineering Theory and Practice, 2015, 35(6):1361-1372.