科技纵横

基因组学与地球科学迅猛发展,古生物学进入纵深发展新时代——2017年古生物学热点回眸

  • 朱敏 ,
  • 陈平富
展开
  • 中国科学院古脊椎动物与古人类研究所, 中国科学院脊椎动物演化与人类起源重点实验室, 北京 100044
朱敏,研究员,研究方向为早期脊椎动物起源与演化,电子信箱:zhumin@ivpp.ac.cn

收稿日期: 2018-01-08

  修回日期: 2018-01-30

  网络出版日期: 2018-03-28

基金资助

国家自然科学基金项目(41530102);中国科学院前沿科学重点研究项目(QYZDJ-SSW-DQC002)

Rapid development of genomics and earth science, paleontology into the new era: Hot research topics in paleontology in 2017

  • ZHU Min ,
  • CHEN Pingfu
Expand
  • CAS Key Laboratory of Vertebrate Evolution and Human Origins;Institute of Vertebrate Paleonotology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China

Received date: 2018-01-08

  Revised date: 2018-01-30

  Online published: 2018-03-28

摘要

古生物学是以化石为主要研究对象,研究地质历史时期的生物界及其发展的科学,属于地球科学与生命科学之间的交叉学科。随着生命科学基因组学与地球系统科学的迅猛发展,古生物学这门古老学科进入了纵深发展的新时代,不断涌现振奋人心的研究进展与新发现。本文回顾了2017年国际古生物研究领域取得的重要进展与研究热点,并介绍了中国古生物学界2017年在早期生命、早期后口动物、古脊椎动物、古人类、古DNA以及演化古生物学等研究方向做出的重要贡献。

本文引用格式

朱敏 , 陈平富 . 基因组学与地球科学迅猛发展,古生物学进入纵深发展新时代——2017年古生物学热点回眸[J]. 科技导报, 2018 , 36(5) : 14 -22 . DOI: 10.3981/j.issn.1000-7857.2018.05.002

Abstract

Focusing on the outstanding contributions made by Chinese paleontologists, this paper reviews the research advances and hotspots in paleontology around the world in 2017, involving excellent studies on early life, early deuterostomes, fossil vertebrates, ancient humans, ancient DNA, and evolutionary paleobiology.

参考文献

[1] Hublin J J, Ben-Ncer A, Bailey S E, et al. New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens[J]. Nature, 2017, 546(7657):289-292.
[2] Richter D, Grun R, Joannes-Boyau R, et al. The age of the hominin fossils from Jebel Irhoud, Morocco, and the origins of the Middle Stone Age[J]. Nature, 2017, 546(7657):293-296.
[3] Li, Z Y, Wu, X J, Zhou, L P, et al. Late Pleistocene archaic human crania from Xuchang, China[J]. Science, 2017, 355(6328):969-972.
[4] Nengo I, Tafforeau P, Gilbert C C, et al. New infant cranium from the African Miocene sheds light on ape evolution[J]. Nature, 2017, 548(7666):169-174.
[5] Posth C, Wissing C, Kitagawa K, et al. Deeply divergent archaic mitochondrial genome provides lower time boundary for African gene flow into Neanderthals[J]. Nature Communications, 2017, 8:16046.
[6] Slon V, Hopfe C, Weiß C L, et al. Neandertal and Denisovan DNA from Pleistocene sediments[J]. Science, 2017, 356(6338):605-608.
[7] Librado P, Gamba C, Gaunitz C, et al. Ancient genomic changes associated with domestication of the horse[J]. Science, 2017, 356(6336):442-445.
[8] Ottoni C, Van Neer W, De Cupere B, et al. The palaeogenetics of cat dispersal in the ancient world[J]. Nature Ecology & Evolution, 2017, 1(7):139.
[9] Schopf J W, Packer B M. Early Archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia[J]. Science, 1987, 237(4810):70-73.
[10] Schopf J W. Microfossils of the early Archean Apex Chert:New evidence of the antiquity of life[J]. Science, 1993, 260(5108):640-646.
[11] Schopf J W, Kitajima K, Spicuzza M J, et al. SIMS analyses of the oldest known assemblage of microfossils document their taxon-correlated carbon isotope compositions[J]. PNAS, 2017, doi:10.1073/pnas.1718063115.
[12] Djokic T, Van Kranendonk M J, Campbell K A, et al. Earliest signs of life on land preserved in ca. 3.5 Ga hot spring deposits[J]. Nature Communications, 2017, 8:15263.
[13] Dodd M S, Papineau D, Grenne T, et al. Evidence for early life in Earth's oldest hydrothermal vent precipitates[J]. Nature, 2017, 543(7643):60-64.
[14] Bengtson S, Rasmussen B, Ivarsson M, et al. Fungus-like mycelial fossils in 2.4-billion-year-old vesicular basalt[J]. Nature Ecology & Evolution, 2017, 1(6):141.
[15] Han J, Conway-Morris S, Ou Q, et al. Meiofaunal deuterostomes from the basal Cambrian of Shaanxi (China)[J]. Nature, 2017b, 542(7640):228-231.
[16] Venkatesh B, Lee A P, Ravi V, et al. Elephant shark genome provides unique insights into gnathostome evolution[J]. Nature, 2014, 505(7482):174-179.
[17] Coates M I, Gess R W, Finarelli J A, et al. A symmoriiform chondrichthyan braincase and the origin of chimaeroid fishes[J]. Nature, 2017, 541(7636):208-211.
[18] Giles S, Xu G-H, Near T J, et al. Early members of ‘living fossil’ lineage imply later origin of modern ray-finned fishes[J]. Nature, 2017, 549(7671):265-268.
[19] Zhu M, Ahlberg P E, Zhao W-J, et al. A Devonian tetrapodlike fish reveals substantial parallelism in stem tetrapod evolution[J]. Nature Ecology & Evolution, 2017, 1(10):1470-1476.
[20] Baron M G, Norman D B, Barrett P M. A new hypothesis of dinosaur relationships and early dinosaur evolution[J]. Nature, 2017, 543(7646):501-506.
[21] Padian K. Dividing the dinosaurs[J]. Nature, 2017, 543(7646):494-495.
[22] Langer M C, Ezcurra M D, Rauhut O W M, et al. Untangling the dinosaur family tree[J]. Nature, 2017, 551(7678):E1-E3.
[23] Wang X L, Kellner A W A, Jiang S X, et al. Egg accumulation with 3D embryos provides insight into the life history of a pterosaur[J]. Science, 2017b, 358(6367):1197-1201.
[24] Wang M, O'Connor J K, Pan Y, et al. A bizarre Early Cretaceous enantiornithine bird with unique crural feathers and an ornithuromorph plough-shaped pygostyle[J]. Nature, Communications, 2017, 8:14141.
[25] Han G, Mao F Y, Bi S D, et al. A Jurassic gliding euharamiyidan mammal with an ear of five auditory bones[J]. Nature, 2017, 551(7681):451-456.
[26] Luo Z X, Meng Q J, Grossnickle D M, et al. New evidence for mammaliaform ear evolution and feeding adaptation in a Jurassic ecosystem[J]. Nature, 2017, 548(7667):326-329.
[27] Meng, Q-J, Grossnickle D M, Liu D, et al. New gliding mammaliaforms from the Jurassic[J]. Nature, 2017, 548(7667):291-296.
[28] Van Valen L. A new evolutionary law[J]. Evolutionary Theory, 1973, 1:1-30.
[29] Marshall C R. A tip of the hat to evolutionary change[J]. Nature, 2017, 552(7683):35-37.
[30] Zliobaite I, Fortelius M, Stenseth N C. Reconciling taxon senescence with the Red Queen's hypothesis[J]. Nature, 2017, 552(7683):92-95.
[31] Schmitz B, Yin Q Z, Sanborn M E, et al. A new type of solarsystem material recovered from Ordovician marine limestone[J]. Nature Communications, 2016, 7:11851.
[32] Lindskog A, Costa M M, Rasmussen C M Ø, et al. Refined Ordovician timescale reveals no link between asteroid breakup and biodiversification[J]. Nature Communications, 2017, 8:14066.
[33] Edwards C T, Saltzman M R, Royer D L, et al. Oxygenation as a driver of the Great Ordovician Biodiversification Event[J]. Nature Geoscience, 2017, 10:925-929.
[34] Xiang L, Schoepfer S D, Shen S Z, et al. Evolution of oceanic molybdenum and uranium reservoir size around the Ediacaran-Cambrian transition:Evidence from western Zhejiang, South China[J]. Earth and Planetary Science Letters, 2017, 464:84-94.
[35] Zhang J, Fan T, Zhang Y, et al. Heterogenous oceanic redox conditions through the Ediacaran-Cambrian boundary limited the metazoan zonation[J]. Scientific Reports, 2017, 7:8550.
文章导航

/