专题论文

激光冷却和操控原子:原理与应用

  • 庄伟 ,
  • 李天初
展开
  • 中国计量科学研究院, 北京 100029
庄伟,副研究员,研究方向为冷原子干涉重力测量,电子信箱:zhuangwei@nim.ac.cn

收稿日期: 2017-02-21

  修回日期: 2018-01-11

  网络出版日期: 2018-03-28

基金资助

国家重点研发计划项目(2016YFF0200200);国家自然科学基金青年基金项目(11704361)

Laser cooling and manipulating atoms: Principles and applications

  • ZHUANG Wei ,
  • LI Tianchu
Expand
  • National Institute of Metrology, Beijing 100029, China

Received date: 2017-02-21

  Revised date: 2018-01-11

  Online published: 2018-03-28

摘要

利用激光进行冷却和囚禁原子,可降低原子热运动速度、实现原子的量子操控,在精密测量等领域具有重要应用。本文概述了激光冷却和囚禁原子技术的发展历程及其基本原理,综述了该技术在玻色-爱因斯坦凝聚、原子钟和原子干涉仪等领域的应用。

本文引用格式

庄伟 , 李天初 . 激光冷却和操控原子:原理与应用[J]. 科技导报, 2018 , 36(5) : 28 -38 . DOI: 10.3981/j.issn.1000-7857.2018.05.004

Abstract

Laser cooling and trapping of atoms may reduce atoms'thermal velocities and manipulate them with quantum technologies, as widely applied in precise measurements. This paper reviews the history of laser cooling and trapping, explains its basic principles, and introduces its applications in Bose-Einstein condensates, atomic clocks and atomic interferometers.

参考文献

[1] Lebedev P. Untersuchungen über die druckkräfte des lichtes[J]. Annalen der Physik, 1901, 311(11):433-458.
[2] Nichols E F, Hull G F. A preliminary communication on the pressure of heat and light radiation[J]. Physical Review, 1901, 13(5):307-320.
[3] Frisch R. Experimenteller nachweis des Einsteinschen strahlungsrückstoβes[J]. Zeitschrift für Physik, 1933, 86(1-2):42-48.
[4] Letokhov V. Narrowing of the Doppler width in a standing light wave[J]. Zhetf Pisma Redaktsiiu, 1968(7):348.
[5] Ashkin A. Atomic-beam deflection by resonanceradiation pressure[J]. Physical Review Letters, 1970, 25(19):1321-1324.
[6] Ashkin A. Trapping of atoms by resonance radiation pressure[J]. Physical Review Letters, 1978, 40(12):729-733.
[7] Bjorkholm J E, Freeman R R, Ashkin A, et al. Observation of focusing on neutral atoms by the dipole forces of resonance-radiation pressure[J]. Physical Review Letters, 1978, 41(20):1361-1364.
[8] Hänsch T W, Schawlow A L. Cooling of gases by laser radiation[J]. Optics Communications, 1975, 13(1):68-69.
[9] Phillips W D, Metcalf H. Laser deceleration of an atomic beam[J]. Physical Review Letters, 1982, 48(9):596-599.
[10] Prodan J, Phillips W D, Metcalf H. Laser production of a very slow monoenergetic atomic beam[J]. Physical Review Letters, 1982, 49(16):1149-1153.
[11] Prodan J, Migdall A, Phillips W D, et al. Stopping atoms with laser light[J]. Physical Review Letters, 1985, 54(10):992-995.
[12] Ertmer W, Blatt R, Hall J, et al. Laser manipulation of atomic beam velocities:Demonstration of stopped atoms and velocity reversal[J]. Physical Review Letters, 1985, 54(10):996-999.
[13] Migdall A, Prodan J, Phillips W D, et al. First observation of magnetically trapped neutral atoms[J]. Physical Review Letters, 1985, 54(24):2596-2599.
[14] Chu S, Hollberg L, Bjorkholm J, et al. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure[J]. Physical Review Letters, 1985, 55(1):48-51.
[15] Chu S, Bjorkholm J, Ashkin A, et al. Experimental observation of optically trapped atoms[J]. Physical Review Letters, 57(3):314-317.
[16] Raab E L, Prentiss M, Cable A, et al. Trapping of neutral sodium atoms with radiation pressure[J]. Physical Review Letters, 1987, 59(23):2631-2634.
[17] Monroe C, Swann W, Robinson H, et al. Very cold trapped atoms in a vapor cell[J]. Physical Review Letters, 1990, 65(13):1571-1574.
[18] Lett P D, Watts R N, Westbrook C I, et al. Observation of atoms laser cooled below the Doppler limit[J]. Physical Review Letters, 1988, 61(2):169-172.
[19] Dalibard J, Cohen-Tannoudji C. Laser cooling below the Doppler limit by polarization gradients:Simple theoretical models[J]. Journal of the Optical Society of America B, 1989, 6(11):2023-2045.
[20] Ungar P J, Weiss D S, Riis E, et al. Optical molasses and multilevel atoms:Theory[J]. Journal of the Optical Society of America B, 1989, 6(11):2058-2071.
[21] Weiss D S, Riis E, Shevy Y, et al. Optical molasses and multilevel atoms:Experiment[J]. Journal of the Optical Society of America B, 1989, 6(11):2072-2083.
[22] Lett P D, Phillips W D, Rolston S L, et al. Optical molasses[J]. Journal of the Optical Society of America B, 1989, 6(11):2084-2107.
[23] Salomon C, Dalibard J, Phillips W D, et al. Laser cooling of cesium atoms below 3 microkelvins[J]. Europhysics Letters, 1990, 12(8):683-688.
[24] Aspect A, Arimondo E, Kaiser R, et al. Laser cooling below the one-photon recoil by velocity-selective coherent population trapping[J]. Physical Review Letters, 1988, 61(7):826-829.
[25] Aspect A, Arimondo E, Kaiser R, et al. Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping:Theoretical analysis[J]. Journal of the Optical Society of America B, 1989, 6(11):2112-2124.
[26] Lawall J, Prentiss M. Demonstration of a novel atomic beam splitter[J]. Physical Review Letters, 1994, 72(7), 993-996.
[27] Lawall J, Kulin S, Saubaméa B, et al. Three-dimensional laser cooling of Helium beyond the single-photon recoil limit[J]. Physical Review Letters, 1995, 75(23):4194-4197.
[28] Bardou F, Saubaméa B, Lawall J, et al. Sub-recoil laser cooling with precooled atoms[J]. Comptes Rendus de l'Académie des Sciences. Series Ⅱ, Mechanics, Physics, Chemistry, Astronomy, 1994, 318(2):877-885.
[29] Saubaméa B, Hijmans T W, Kulin S, et al. Direct measurement of the spatial correlation function of ultracold atoms[J]. Physical Review Letters, 1997, 79(17):3146-3149.
[30] Kasevich M, Chu S. Laser cooling below a photon recoil with three-level atoms[J]. Physical Review Letters, 1992, 69(12):1741-1744.
[31] Davidson N, Lee H J, Kasevich M, et al. Raman cooling of atoms in two and three dimensions[J]. Physical Review Letters, 1994, 72(20):3158-3161.
[32] Lee H J, Adams C S, Kasevich M, et al. Raman cooling of atoms in an optical dipole trap[J]. Physical Review Letters, 1996, 76(15):2658-2661.
[33] Reichel J, Bardou F, Dahan M B, et al. Raman cooling of Cesium below 3 nK:New approach inspired by Lévy flight statistics[J]. Physical Review Letters, 1995, 75(25):4575-4578.
[34] Chu S. The manipulation of neutral particles[J]. Reviews of Modern Physics, 1998, 70(3):685-706.
[35] Cohen-Tannoudji C. Manipulating atoms with photons[J]. Reviews of Modern Physics, 1998, 70(3):707-719.
[36] Phillips W D. Laser cooling and trapping of neutral atoms[J]. Reviews of Modern Physics, 1998, 70(3):721-741.
[37] Metcalf H, Straten P V D. Laser cooling and trapping[M]. New York:Springer-Verlag, 1999:29-37.
[38] 王义遒. 原子的激光冷却与陷俘[M]. 北京:北京大学出版社, 2007:90-117, 383-411. Wang Yiqiu. Laser cooling and trapping of atoms[M]. Beijing:Peking University Press, 2007:90-117, 383-411.
[39] Cohen-Tannoudji C, Gury-Odelin D. Advances in atomic physics[M]. Singapore:World Scientific, 2011:247-266.
[40] Letokhov V S, Minogin V G, Pavlik B D. Cooling and capture of atoms and molecules by a resonant light field[J]. Soviet Physics Journal of Experimental and Theoretical Physics, 1977, 45(4):698-705.
[41] Sheehy B, Shang S Q, ven der Straten P, et al. Magneticfield-indueced laser cooling below the Doppler limit[J]. Physical Review Letters, 1990, 64(8):858-861.
[42] Shang S Q, Sheehy B, ven der Straten P, et al. Velocity-selective magnetic-resonance laser cooling[J]. Physical Review Letters, 1990, 65(3):317-320.
[43] Anderson M H, Ensher J R, Matthews M R, et al. Observation of Bose-Einstein condensation in a dilute atomic vapor[J]. Science, 1995, 269(5221):198-201.
[44] Davis K B, Mewes M, Andrews M R, et al. Bose-Einstein condensation in a gas of sodium atoms[J]. Physical Review Letters, 1995, 75(22):3969-3973.
[45] Bradley C C, Sackett C A, Tollet J J, et al. Evidence of Bose-Einstein condensation in an atomic gas with atrractive interactions[J]. Physical Review Letters, 1995, 75(9):1687-1690.
[46] Bose S. Plancks Gesetz und Lichtquantenhypothese[J]. Zeitschrift Für Physik, 1924, 26(1):178-181.
[47] Einstein A. Quantentheorie des einatomigen idealen Gases[J]. Sitzungsberichte der Preussischen Akademie der Wissenschaften, 1925:3-10.
[48] Andrews M R, Townsend C G, Miesner H, et al. Observation of interference between Bose-Einstein condensates[J]. Science, 1997, 275(5300):637-641.
[49] Abo-Shaeer J R, Raman C, Vogels J M, et al. Observation of vortex lattices in Bose-Einstein condensates[J]. Science, 2001, 292(5516):476-479.
[50] Stwalley W C, Nosanow L H. Possible "new" quantum systems[J]. Physical Review Letters, 1976, 36(15):910-913.
[51] Silvera I F, Walraven J T M. Stabilization of atomic Hydrogen at low temperature[J]. Physical Review Letters, 1980, 44(3):164-168.
[52] Cline R W, Smith D A, Greytak T J, et al. Magnetic confinement of spin-polarized atomic hydrogen[J]. Physical Review Letters, 1980, 45(26):2117-2120.
[53] Hess H F. Evaporative cooling of magnetically trapped and compressed spin-polarized hydrogen[J]. Physical Review B, 34(5):3476-3479.
[54] Masuhara N, Doyle J M, Sandbert J C, et al. Evaporative cooling of spin-polarized atomic hydrogen[J]. Physical Review Letters, 1988, 61(8):935-938.
[55] Ketterle W, Davis K B, Joffe M A, et al. High densities of cold atoms in a dark spontaneous-force optical trap[J]. Physical Review Letters, 1993, 70(15):2253-2256.
[56] Majorana E. Atomi orientati in campo magnetico variabile[J]. IL Nuovo Cimento, 1932, 9(2):43-50.
[57] Petrich W, Anderson M H, Ensher J R, et al. Stable, tightly confining magnetic trap for evaporative cooling of neutral atoms[J]. Physical Review Letters, 1995, 74(17):3352-3355.
[58] Davis K B, Mewes M O, Joffe M A, et al. Evaporative cooling of sodium atoms[J]. Physical Review Letters, 1995, 74(26):5202-5205.
[59] Cornell E A, Wieman C E. Nobel lecture:Bose-Einstein condensate in a dilute gas, the first 70 years and some recent experiments[J]. Reviews of Modern Physics, 2002, 74(3):875-893.
[60] Bradley C C, Sackett C A, Hulet R G. Bose-Einstein condensation of Lithium:Observation of limited condensate number[J]. Physical Review Letters, 1997, 78(6):985-989.
[61] Fried D G, Killian T C, Willmann L, et al. Bose-Einstein condensation of atomic Hydrogen[J]. Physical Review Letters, 1998, 81(18):3811-3814.
[62] Ketterle W. Nobel lecture:When atoms behave as waves:Bose-Einstein condensation and the atom laser[J]. Reviews of Modern Physics, 2002, 74(3), 1131-1151.
[63] Wang Y Z, Zhou X Y, Long Q, et al. Evidence for a BoseEinstein condensate in dilute Rb gas by absorption image in a quadrupole and Ioffe configuration trap[J]. Chinese Physics Letters, 2003, 20(6):799-801.
[64] Chen S, Zhou X J, Yang F, et al. Optimization of the loading process of the QUIC magnetic trap for the experiment of Bose-Einstein condensation[J]. Chinese Physics Letters, 2004, 21(11):2227-2230.
[65] Parker T. Long-term comparison of caesium fountain primary frequency standards[J]. Metrologia, 2010, 47(1):1-10.
[66] Essen L, Parry J. An Atomic standard of frequency and time interval:A Caesium resonator[J]. Nature, 1955, 176(4476):280-282.
[67] Terrien J. News from the International Bureau of Weights and Measures[J]. Metrologia, 1968, 4(1):41-45.
[68] Riehle F. Frequency standards:Basics and applications[M]. Darmstadt:Wiley-VCH, 2004:203-227.
[69] Zacharias J, Yates G, Haun R. An atomic frequency standard[J]. Proc IRE, 1955, 43:364.
[70] Kasevich M A, Riis E, Chu S, et al. Rf spectroscopy in an atomic fountain[J]. Physical Review Letters, 1989, 63(6):612-615.
[71] Clairon A, Salomon C, Guellati S, et al. Ramsey resonance in a Zacharias fountain[J]. Europhysics Letters, 1991, 16(2):165-170.
[72] Clairon A, Laurent P, Santarelli G, et al. A cesium fountain frequency standard:Preliminary results[J]. IEEE Transactions on Instrumentation & Measurement, 1995, 44(2):128-131.
[73] 李天初, 李明寿, 林平卫, 等. NIM4激光冷却-铯原子喷泉钟-新一代国家时间频率基准[J]. 计量学报, 2004, 25(3):193-197. Li Tianchu, Li Mingshou, Lin Pingwei, et al. NIM4 Laser cooling Cesium atomic fountain clock:A new generation of time and frequency primary standard[J]. Acta Metrologica Sinica, 2004, 25(3):193-197.
[74] Fang F, Li M, Lin P W, et al. NIM5 Cs fountain clock and its evaluation[J]. Metrologia, 2015, 52(4):454-468.
[75] 李天初, 方占军. 从长度米到时间秒:稳频激光-铯喷泉钟-飞秒光梳-锶光晶格钟[J]. 科学通报, 2011,56(10):709-716. Li Tianchu, Fang Zhanjun. From meter to second at NIM:Stabilized lasers-Cs fountain clocks-fs optical frequency combs-Sr lattice clock[J]. Chinese Science Bulletin, 2011, 56(10):709-716.
[76] Katori H, Ido T, Isoya Y, et al. Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature[J]. Physical Review Letters, 1999, 82(6):1116-1119.
[77] Tokamoto M, Katori H. Spectroscopy of the 1S0-3P0 clock transition of 87Sr in an optical lattice[J]. Physical Review Letters,2003, 91(22):223001.
[78] Tokamoto M, Hong F L, Higashi R, et al. An optical lattice clock[J]. Nature, 2005, 435(7040):321-324.
[79] Nicholson T L, Campbell1 S L, Hutson R B, et al. Systematic evaluation of an atomic clock at 2×10-18 total unvertainty[J]. Nature Communications, 2015(6):6896.
[80] Lin Y G, Wang Q, Li Y, et al. First evaluation and frequency measurement of the Strontium optical lattice clock at NIM[J]. Chinese Physics Letters, 2015, 32(9):090601.
[81] Carnal O, Mlynek J. Young's double-slit experiment with atoms:A simple atom interferometer[J]. Physical Review Letters, 1991, 66(21):2689-2692.
[82] Keith D W, Ekstrom C R, Turchette Q A, et al. An interferometer for atoms[J]. Physical Review Letters, 1991, 66(21):2693-2696.
[83] Shimizu F, Shimizu K, Takuma H. Double-slit interference with ultracold metastable neon atoms[J]. Physical Review A, 1992, 46(1):R17-R20.
[84] Rasel E M, Oberthaler M K, Batelaan H, et al. Atom wave interferometry with diffraction gratings of light[J]. Physical Review Letters, 1995, 75(14):2633-2637.
[85] Bordé C J. Atomic interferometry with internal state labelling[J]. Physical Review A, 1989, 140(1-2):10-12.
[86] Riehle F, Kisters Th, Witte A, et al. Optical Ramsey spectroscopy in a rotating frame:Sagnac effect in a matter-wave interferometer[J]. Physical Review Letters, 1991, 67(2):177-180.
[87] Kasevich M, Chu S. Atomic interferometry using stimulated Raman transitions[J]. Physical Review Letters, 1991, 67(2):181-184.
[88] Peters A, Chung K Y, Chu S. High-precision gravity measurements using atom interferometry[J]. Metrologia, 2001, 38(1):25-62.
[89] Kasevich M, Chu S. Measurement of the Gravitational acceleration of an atom with a light-pulse atom interferometer[J]. Applied Physics B, 1992, 54(5):321-332.
[90] Peters A, Chung K Y, Chu S. Measurement of gravitational acceleration by dropping atoms[J]. Nature, 1999, 400(6747):849-852.
[91] Weiss D S, Young B C, Chu S. Precision measurement of h/mCs based on photon recoil using laser-cooled atoms and atomic interferometry[J]. Applied Physics B 1994, 59(3):217-256.
[92] Gustavson T L, Bouyer P, Kasevich M A. Precision rotation measurements with an atom interferometer gyroscope[J]. Physical Review Letters, 1997, 78(11):2046-2049.
[93] Snadden M J, Mcguirk J M, Bouyer P, et al. Measurement of the Earth's gravity gradient with an atom interferometerbased gravity gradiometer[J]. Physical Review Letters, 1998, 81(5):971-974.
[94] Zhou L, Xiong Z Y, Yang W, et al. Measurement of local gravity via a cold atom interferometer[J]. Chinese Physics Letters, 2011, 28(1):013701.
[95] Hu Z K, Sun B L, Duan X C, et al. Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter[J]. Physical Review A, 2013, 88(4):043610.
[96] Wu B, Wang Z Y, Cheng B, et al. The investigation of a μGal-level cold atom gravimeter for field applications[J]. Metrologia, 2014, 51(5):452-458.
[97] 赵阳, 王少凯, 庄伟, 等. 87Rb原子干涉绝对重力仪激光系统设计[J]. 激光与光电学进展, 2015, 52(9):196-202. Zhao Yang, Wang Shaokai, Zhuang Wei, et al. Design of laser system for absolute gravimeter based on 87Rb atom interferometer[J]. Laser & Optoelectronics Progress, 2015, 52(9):196-202.
[98] Kovachy T, Hogan J, Sugarbaker A, et al. Matter wave lensing to picokelvin temperatures[J]. Physical Review Letters, 2014, 114(14):143004.
[99] DeMarco B, Jin D S. Onset of Fermi degeneracy in a trapped atomic gas[J]. Science, 1999, 285(5434):1703-1706.
[100] Williams J and Holland M. Preparing topological states of a Bose-Einstein condensate[J]. Nature, 1999, 401(6753):568-572.
[101] Greiner M, Mandel O, Esslinger T, et al. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms[J]. Nature, 2002, 415(6867):39-44.
文章导航

/