[1] Lebedev P. Untersuchungen über die druckkräfte des lichtes[J]. Annalen der Physik, 1901, 311(11):433-458.
[2] Nichols E F, Hull G F. A preliminary communication on the pressure of heat and light radiation[J]. Physical Review, 1901, 13(5):307-320.
[3] Frisch R. Experimenteller nachweis des Einsteinschen strahlungsrückstoβes[J]. Zeitschrift für Physik, 1933, 86(1-2):42-48.
[4] Letokhov V. Narrowing of the Doppler width in a standing light wave[J]. Zhetf Pisma Redaktsiiu, 1968(7):348.
[5] Ashkin A. Atomic-beam deflection by resonanceradiation pressure[J]. Physical Review Letters, 1970, 25(19):1321-1324.
[6] Ashkin A. Trapping of atoms by resonance radiation pressure[J]. Physical Review Letters, 1978, 40(12):729-733.
[7] Bjorkholm J E, Freeman R R, Ashkin A, et al. Observation of focusing on neutral atoms by the dipole forces of resonance-radiation pressure[J]. Physical Review Letters, 1978, 41(20):1361-1364.
[8] Hänsch T W, Schawlow A L. Cooling of gases by laser radiation[J]. Optics Communications, 1975, 13(1):68-69.
[9] Phillips W D, Metcalf H. Laser deceleration of an atomic beam[J]. Physical Review Letters, 1982, 48(9):596-599.
[10] Prodan J, Phillips W D, Metcalf H. Laser production of a very slow monoenergetic atomic beam[J]. Physical Review Letters, 1982, 49(16):1149-1153.
[11] Prodan J, Migdall A, Phillips W D, et al. Stopping atoms with laser light[J]. Physical Review Letters, 1985, 54(10):992-995.
[12] Ertmer W, Blatt R, Hall J, et al. Laser manipulation of atomic beam velocities:Demonstration of stopped atoms and velocity reversal[J]. Physical Review Letters, 1985, 54(10):996-999.
[13] Migdall A, Prodan J, Phillips W D, et al. First observation of magnetically trapped neutral atoms[J]. Physical Review Letters, 1985, 54(24):2596-2599.
[14] Chu S, Hollberg L, Bjorkholm J, et al. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure[J]. Physical Review Letters, 1985, 55(1):48-51.
[15] Chu S, Bjorkholm J, Ashkin A, et al. Experimental observation of optically trapped atoms[J]. Physical Review Letters, 57(3):314-317.
[16] Raab E L, Prentiss M, Cable A, et al. Trapping of neutral sodium atoms with radiation pressure[J]. Physical Review Letters, 1987, 59(23):2631-2634.
[17] Monroe C, Swann W, Robinson H, et al. Very cold trapped atoms in a vapor cell[J]. Physical Review Letters, 1990, 65(13):1571-1574.
[18] Lett P D, Watts R N, Westbrook C I, et al. Observation of atoms laser cooled below the Doppler limit[J]. Physical Review Letters, 1988, 61(2):169-172.
[19] Dalibard J, Cohen-Tannoudji C. Laser cooling below the Doppler limit by polarization gradients:Simple theoretical models[J]. Journal of the Optical Society of America B, 1989, 6(11):2023-2045.
[20] Ungar P J, Weiss D S, Riis E, et al. Optical molasses and multilevel atoms:Theory[J]. Journal of the Optical Society of America B, 1989, 6(11):2058-2071.
[21] Weiss D S, Riis E, Shevy Y, et al. Optical molasses and multilevel atoms:Experiment[J]. Journal of the Optical Society of America B, 1989, 6(11):2072-2083.
[22] Lett P D, Phillips W D, Rolston S L, et al. Optical molasses[J]. Journal of the Optical Society of America B, 1989, 6(11):2084-2107.
[23] Salomon C, Dalibard J, Phillips W D, et al. Laser cooling of cesium atoms below 3 microkelvins[J]. Europhysics Letters, 1990, 12(8):683-688.
[24] Aspect A, Arimondo E, Kaiser R, et al. Laser cooling below the one-photon recoil by velocity-selective coherent population trapping[J]. Physical Review Letters, 1988, 61(7):826-829.
[25] Aspect A, Arimondo E, Kaiser R, et al. Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping:Theoretical analysis[J]. Journal of the Optical Society of America B, 1989, 6(11):2112-2124.
[26] Lawall J, Prentiss M. Demonstration of a novel atomic beam splitter[J]. Physical Review Letters, 1994, 72(7), 993-996.
[27] Lawall J, Kulin S, Saubaméa B, et al. Three-dimensional laser cooling of Helium beyond the single-photon recoil limit[J]. Physical Review Letters, 1995, 75(23):4194-4197.
[28] Bardou F, Saubaméa B, Lawall J, et al. Sub-recoil laser cooling with precooled atoms[J]. Comptes Rendus de l'Académie des Sciences. Series Ⅱ, Mechanics, Physics, Chemistry, Astronomy, 1994, 318(2):877-885.
[29] Saubaméa B, Hijmans T W, Kulin S, et al. Direct measurement of the spatial correlation function of ultracold atoms[J]. Physical Review Letters, 1997, 79(17):3146-3149.
[30] Kasevich M, Chu S. Laser cooling below a photon recoil with three-level atoms[J]. Physical Review Letters, 1992, 69(12):1741-1744.
[31] Davidson N, Lee H J, Kasevich M, et al. Raman cooling of atoms in two and three dimensions[J]. Physical Review Letters, 1994, 72(20):3158-3161.
[32] Lee H J, Adams C S, Kasevich M, et al. Raman cooling of atoms in an optical dipole trap[J]. Physical Review Letters, 1996, 76(15):2658-2661.
[33] Reichel J, Bardou F, Dahan M B, et al. Raman cooling of Cesium below 3 nK:New approach inspired by Lévy flight statistics[J]. Physical Review Letters, 1995, 75(25):4575-4578.
[34] Chu S. The manipulation of neutral particles[J]. Reviews of Modern Physics, 1998, 70(3):685-706.
[35] Cohen-Tannoudji C. Manipulating atoms with photons[J]. Reviews of Modern Physics, 1998, 70(3):707-719.
[36] Phillips W D. Laser cooling and trapping of neutral atoms[J]. Reviews of Modern Physics, 1998, 70(3):721-741.
[37] Metcalf H, Straten P V D. Laser cooling and trapping[M]. New York:Springer-Verlag, 1999:29-37.
[38] 王义遒. 原子的激光冷却与陷俘[M]. 北京:北京大学出版社, 2007:90-117, 383-411. Wang Yiqiu. Laser cooling and trapping of atoms[M]. Beijing:Peking University Press, 2007:90-117, 383-411.
[39] Cohen-Tannoudji C, Gury-Odelin D. Advances in atomic physics[M]. Singapore:World Scientific, 2011:247-266.
[40] Letokhov V S, Minogin V G, Pavlik B D. Cooling and capture of atoms and molecules by a resonant light field[J]. Soviet Physics Journal of Experimental and Theoretical Physics, 1977, 45(4):698-705.
[41] Sheehy B, Shang S Q, ven der Straten P, et al. Magneticfield-indueced laser cooling below the Doppler limit[J]. Physical Review Letters, 1990, 64(8):858-861.
[42] Shang S Q, Sheehy B, ven der Straten P, et al. Velocity-selective magnetic-resonance laser cooling[J]. Physical Review Letters, 1990, 65(3):317-320.
[43] Anderson M H, Ensher J R, Matthews M R, et al. Observation of Bose-Einstein condensation in a dilute atomic vapor[J]. Science, 1995, 269(5221):198-201.
[44] Davis K B, Mewes M, Andrews M R, et al. Bose-Einstein condensation in a gas of sodium atoms[J]. Physical Review Letters, 1995, 75(22):3969-3973.
[45] Bradley C C, Sackett C A, Tollet J J, et al. Evidence of Bose-Einstein condensation in an atomic gas with atrractive interactions[J]. Physical Review Letters, 1995, 75(9):1687-1690.
[46] Bose S. Plancks Gesetz und Lichtquantenhypothese[J]. Zeitschrift Für Physik, 1924, 26(1):178-181.
[47] Einstein A. Quantentheorie des einatomigen idealen Gases[J]. Sitzungsberichte der Preussischen Akademie der Wissenschaften, 1925:3-10.
[48] Andrews M R, Townsend C G, Miesner H, et al. Observation of interference between Bose-Einstein condensates[J]. Science, 1997, 275(5300):637-641.
[49] Abo-Shaeer J R, Raman C, Vogels J M, et al. Observation of vortex lattices in Bose-Einstein condensates[J]. Science, 2001, 292(5516):476-479.
[50] Stwalley W C, Nosanow L H. Possible "new" quantum systems[J]. Physical Review Letters, 1976, 36(15):910-913.
[51] Silvera I F, Walraven J T M. Stabilization of atomic Hydrogen at low temperature[J]. Physical Review Letters, 1980, 44(3):164-168.
[52] Cline R W, Smith D A, Greytak T J, et al. Magnetic confinement of spin-polarized atomic hydrogen[J]. Physical Review Letters, 1980, 45(26):2117-2120.
[53] Hess H F. Evaporative cooling of magnetically trapped and compressed spin-polarized hydrogen[J]. Physical Review B, 34(5):3476-3479.
[54] Masuhara N, Doyle J M, Sandbert J C, et al. Evaporative cooling of spin-polarized atomic hydrogen[J]. Physical Review Letters, 1988, 61(8):935-938.
[55] Ketterle W, Davis K B, Joffe M A, et al. High densities of cold atoms in a dark spontaneous-force optical trap[J]. Physical Review Letters, 1993, 70(15):2253-2256.
[56] Majorana E. Atomi orientati in campo magnetico variabile[J]. IL Nuovo Cimento, 1932, 9(2):43-50.
[57] Petrich W, Anderson M H, Ensher J R, et al. Stable, tightly confining magnetic trap for evaporative cooling of neutral atoms[J]. Physical Review Letters, 1995, 74(17):3352-3355.
[58] Davis K B, Mewes M O, Joffe M A, et al. Evaporative cooling of sodium atoms[J]. Physical Review Letters, 1995, 74(26):5202-5205.
[59] Cornell E A, Wieman C E. Nobel lecture:Bose-Einstein condensate in a dilute gas, the first 70 years and some recent experiments[J]. Reviews of Modern Physics, 2002, 74(3):875-893.
[60] Bradley C C, Sackett C A, Hulet R G. Bose-Einstein condensation of Lithium:Observation of limited condensate number[J]. Physical Review Letters, 1997, 78(6):985-989.
[61] Fried D G, Killian T C, Willmann L, et al. Bose-Einstein condensation of atomic Hydrogen[J]. Physical Review Letters, 1998, 81(18):3811-3814.
[62] Ketterle W. Nobel lecture:When atoms behave as waves:Bose-Einstein condensation and the atom laser[J]. Reviews of Modern Physics, 2002, 74(3), 1131-1151.
[63] Wang Y Z, Zhou X Y, Long Q, et al. Evidence for a BoseEinstein condensate in dilute Rb gas by absorption image in a quadrupole and Ioffe configuration trap[J]. Chinese Physics Letters, 2003, 20(6):799-801.
[64] Chen S, Zhou X J, Yang F, et al. Optimization of the loading process of the QUIC magnetic trap for the experiment of Bose-Einstein condensation[J]. Chinese Physics Letters, 2004, 21(11):2227-2230.
[65] Parker T. Long-term comparison of caesium fountain primary frequency standards[J]. Metrologia, 2010, 47(1):1-10.
[66] Essen L, Parry J. An Atomic standard of frequency and time interval:A Caesium resonator[J]. Nature, 1955, 176(4476):280-282.
[67] Terrien J. News from the International Bureau of Weights and Measures[J]. Metrologia, 1968, 4(1):41-45.
[68] Riehle F. Frequency standards:Basics and applications[M]. Darmstadt:Wiley-VCH, 2004:203-227.
[69] Zacharias J, Yates G, Haun R. An atomic frequency standard[J]. Proc IRE, 1955, 43:364.
[70] Kasevich M A, Riis E, Chu S, et al. Rf spectroscopy in an atomic fountain[J]. Physical Review Letters, 1989, 63(6):612-615.
[71] Clairon A, Salomon C, Guellati S, et al. Ramsey resonance in a Zacharias fountain[J]. Europhysics Letters, 1991, 16(2):165-170.
[72] Clairon A, Laurent P, Santarelli G, et al. A cesium fountain frequency standard:Preliminary results[J]. IEEE Transactions on Instrumentation & Measurement, 1995, 44(2):128-131.
[73] 李天初, 李明寿, 林平卫, 等. NIM4激光冷却-铯原子喷泉钟-新一代国家时间频率基准[J]. 计量学报, 2004, 25(3):193-197. Li Tianchu, Li Mingshou, Lin Pingwei, et al. NIM4 Laser cooling Cesium atomic fountain clock:A new generation of time and frequency primary standard[J]. Acta Metrologica Sinica, 2004, 25(3):193-197.
[74] Fang F, Li M, Lin P W, et al. NIM5 Cs fountain clock and its evaluation[J]. Metrologia, 2015, 52(4):454-468.
[75] 李天初, 方占军. 从长度米到时间秒:稳频激光-铯喷泉钟-飞秒光梳-锶光晶格钟[J]. 科学通报, 2011,56(10):709-716. Li Tianchu, Fang Zhanjun. From meter to second at NIM:Stabilized lasers-Cs fountain clocks-fs optical frequency combs-Sr lattice clock[J]. Chinese Science Bulletin, 2011, 56(10):709-716.
[76] Katori H, Ido T, Isoya Y, et al. Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature[J]. Physical Review Letters, 1999, 82(6):1116-1119.
[77] Tokamoto M, Katori H. Spectroscopy of the 1S0-3P0 clock transition of 87Sr in an optical lattice[J]. Physical Review Letters,2003, 91(22):223001.
[78] Tokamoto M, Hong F L, Higashi R, et al. An optical lattice clock[J]. Nature, 2005, 435(7040):321-324.
[79] Nicholson T L, Campbell1 S L, Hutson R B, et al. Systematic evaluation of an atomic clock at 2×10-18 total unvertainty[J]. Nature Communications, 2015(6):6896.
[80] Lin Y G, Wang Q, Li Y, et al. First evaluation and frequency measurement of the Strontium optical lattice clock at NIM[J]. Chinese Physics Letters, 2015, 32(9):090601.
[81] Carnal O, Mlynek J. Young's double-slit experiment with atoms:A simple atom interferometer[J]. Physical Review Letters, 1991, 66(21):2689-2692.
[82] Keith D W, Ekstrom C R, Turchette Q A, et al. An interferometer for atoms[J]. Physical Review Letters, 1991, 66(21):2693-2696.
[83] Shimizu F, Shimizu K, Takuma H. Double-slit interference with ultracold metastable neon atoms[J]. Physical Review A, 1992, 46(1):R17-R20.
[84] Rasel E M, Oberthaler M K, Batelaan H, et al. Atom wave interferometry with diffraction gratings of light[J]. Physical Review Letters, 1995, 75(14):2633-2637.
[85] Bordé C J. Atomic interferometry with internal state labelling[J]. Physical Review A, 1989, 140(1-2):10-12.
[86] Riehle F, Kisters Th, Witte A, et al. Optical Ramsey spectroscopy in a rotating frame:Sagnac effect in a matter-wave interferometer[J]. Physical Review Letters, 1991, 67(2):177-180.
[87] Kasevich M, Chu S. Atomic interferometry using stimulated Raman transitions[J]. Physical Review Letters, 1991, 67(2):181-184.
[88] Peters A, Chung K Y, Chu S. High-precision gravity measurements using atom interferometry[J]. Metrologia, 2001, 38(1):25-62.
[89] Kasevich M, Chu S. Measurement of the Gravitational acceleration of an atom with a light-pulse atom interferometer[J]. Applied Physics B, 1992, 54(5):321-332.
[90] Peters A, Chung K Y, Chu S. Measurement of gravitational acceleration by dropping atoms[J]. Nature, 1999, 400(6747):849-852.
[91] Weiss D S, Young B C, Chu S. Precision measurement of h/mCs based on photon recoil using laser-cooled atoms and atomic interferometry[J]. Applied Physics B 1994, 59(3):217-256.
[92] Gustavson T L, Bouyer P, Kasevich M A. Precision rotation measurements with an atom interferometer gyroscope[J]. Physical Review Letters, 1997, 78(11):2046-2049.
[93] Snadden M J, Mcguirk J M, Bouyer P, et al. Measurement of the Earth's gravity gradient with an atom interferometerbased gravity gradiometer[J]. Physical Review Letters, 1998, 81(5):971-974.
[94] Zhou L, Xiong Z Y, Yang W, et al. Measurement of local gravity via a cold atom interferometer[J]. Chinese Physics Letters, 2011, 28(1):013701.
[95] Hu Z K, Sun B L, Duan X C, et al. Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter[J]. Physical Review A, 2013, 88(4):043610.
[96] Wu B, Wang Z Y, Cheng B, et al. The investigation of a μGal-level cold atom gravimeter for field applications[J]. Metrologia, 2014, 51(5):452-458.
[97] 赵阳, 王少凯, 庄伟, 等. 87Rb原子干涉绝对重力仪激光系统设计[J]. 激光与光电学进展, 2015, 52(9):196-202. Zhao Yang, Wang Shaokai, Zhuang Wei, et al. Design of laser system for absolute gravimeter based on 87Rb atom interferometer[J]. Laser & Optoelectronics Progress, 2015, 52(9):196-202.
[98] Kovachy T, Hogan J, Sugarbaker A, et al. Matter wave lensing to picokelvin temperatures[J]. Physical Review Letters, 2014, 114(14):143004.
[99] DeMarco B, Jin D S. Onset of Fermi degeneracy in a trapped atomic gas[J]. Science, 1999, 285(5434):1703-1706.
[100] Williams J and Holland M. Preparing topological states of a Bose-Einstein condensate[J]. Nature, 1999, 401(6753):568-572.
[101] Greiner M, Mandel O, Esslinger T, et al. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms[J]. Nature, 2002, 415(6867):39-44.