专题论文

高速实时可见光通信技术研究及应用

  • 陈雄斌 ,
  • 李洪磊
展开
  • 1. 中国科学院半导体研究所, 集成光电子学国家重点实验室, 北京 100083;
    2. 中国科学院大学电子电气与通信工程学院, 北京 101407
陈雄斌,研究员,研究方向为可见光通信与光互连,电子信箱:chenxiongbin@semi.ac.cn

收稿日期: 2017-12-01

  修回日期: 2018-02-11

  网络出版日期: 2018-03-28

基金资助

国家重点研发计划项目(2017YFB0403605);广东省科技计划项目(2014B010120004)

Development progress of visible light communication technology

  • CHEN Xiongbin ,
  • LI Honglei
Expand
  • 1. State Key Laboratory on Integrated Optoelectronics;Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
    2. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 101407, China

Received date: 2017-12-01

  Revised date: 2018-02-11

  Online published: 2018-03-28

摘要

介绍了可见光通信技术的发展历史及研究现状。基于带宽拓展技术搭建了1 W荧光型LED做光源、PIN光电二极管做探测器、单路速率610 Mb/s的实时传输演示系统,该系统在传输距离为6.2 m时的误码率为3.48×10-5。在此基础上搭建了荧光型LED为光源、PIN光电二极管做探测器的、双向100 Mb/s无线光上网演示系统。

本文引用格式

陈雄斌 , 李洪磊 . 高速实时可见光通信技术研究及应用[J]. 科技导报, 2018 , 36(5) : 53 -59 . DOI: 10.3981/j.issn.1000-7857.2018.05.006

Abstract

The development history and status of visible light communication technology are introduced. Then two latest achievements are reported. A 500 Mb/s real-time visible light communication system is reported, which, based on bandwidth expanding technology, uses a 1 watt fluorescent type LED as light source and PIN photodiode as detector, reaching a system bit error rate (BER) of 3.48×10-5 over a 6.2 meters transmission distance. Also reported is a new type of symmetrical 100 Mb/s VLC Ethernet system employing a 1 watt fluorescent type LED and PIN photodiode as devices, too.

参考文献

[1] Kottke C, Vucic J, Walewski J W, et al. 513 Mbit/s visible light communications link based on DMT-modulation of a white LED[J]. Journal of Lightwave Technology, 2010, 28(24):3512-3518.
[2] Vucic J, Kottke C, Kai H, et al. 803 Mbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary[C]//Optical Fiber Communication Conference and Exposition (OFC/NFOEC). Piscataway, NJ:IEEE, 2011:1-3.
[3] Azhar A H, Tran T, O'Brien D. A Gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications[J]. IEEE Photonics Technology Letters, 2013, 25(2):171-174.
[4] Cossu G, Khalid A M, Choudhury P, et al. 3.4 Gbit/s visible optical wireless transmission based on RGB LED[J]. Optics Express, 2012, 20(26):501-506.
[5] Wang Y Q, Wang Y G, Chi N, et al. Demonstration of 575-Mb/s downlink and 225 Mb/s uplink bi-directional SCMWDM visible light communication using RGB LED and phosphor-based LED[J]. Optics Express, 2013, 21(1):1203-1208.
[6] Wu F M, Lin C T, Wei C C, et al. 3.22-Gb/s WDM visible light communication of a single RGB LED employing carrierless amplitude and phase modulation[C]//Conference on Optical Fiber Communication, Collocated National Fiber Optic Engineers Conference (OFC/NFOEC). Piscataway, NJ:IEEE, 2013:1-3.
[7] Wang Y, Huang X, Zhang J, et al. Enhanced performance of visible light communication employing 512 QAM N-SC-FDE and DD-LMS[J]. Optics Express, 2014, 22(13):15328-15334.
[8] Cossu G, Wajahat A, Corsini R, et al. 5.6 Gbit/s downlink and 1.5 Gbit/s uplink optical wireless transmission at indoor distances (≥ 1.5 m)[C]//European Conference on Optical Communication (ECOC). Piscataway, NJ:IEEE, 2014:1-3.
[9] Vucic J, Kottke C, Nerreter S, et al. 230 Mbit/s via a wireless visible light link based on OOK modulation of phosphorescent white LEDs[C]//Conference on Optical Fiber Communication, Collocated National Fiber Optic Engineers Conference (OFC/NFOEC). Piscataway, NJ:IEEE, 2010:1-3.
[10] Fujimoto N, Mochizuki H. 477 Mbit/s visible light transmission based on OOK-NRZ modulation using a single commercially available visible LED and a practical LED driver with a pre-emphasis circuit[C]//Optical Fiber Communication Conference and Exposition (OFC/NFOEC). Piscataway, NJ:IEEE, 2013:1-3.
[11] Fujimoto N, Yamamoto S. The fastest visible light transmissions of 662 Mb/s by a blue LED, 600 Mb/s by a red LED, and 520 Mb/s by a green LED based on simple OOK-NRZ modulation of a commercially available RGB-type white LED using pre-emphasis and post-equalizing techniques[C]//European Conference on Optical Communication(ECOC). Piscataway, NJ:IEEE, 2014:1-3.
[12] Li H L, Chen X B, Huang B J, et al. High bandwidth visible light communications based on a post-equalization circuit[J]. IEEE Photonics Technology Letters, 2014, 26(2):119-122.
[13] Li H L, Chen X B, Guo J Q, et al. A 550 Mbit/s real-time visible light communication system based on phosphorescent white light LED for practical high-speed low complexity application[J]. Optics Express, 2014, 22(22):27203-27213.
[14] Zhang R, Wang J, Wang Z, et al. Visible light communications in heterogeneous networks:Paving the way for user-centric design[J]. IEEE Wireless Communications, 2015, 22(2):8-16.
[15] Chow C W, Liu Y, Yeh C H, et al. A practical in-home illumination consideration to reduce data rate fluctuation in visible light communication[J]. IEEE Wireless Communications, 2015, 22(2):17-23.
[16] Yang A, Wu Y, Kavehrad M, et al. Grouped modulation scheme for LED array module in a visible light communication system[J]. IEEE Wireless Communications, 2015, 22(2):24-28.
[17] Zafar F, Karunatilaka D, Parthiban R. Dimming schemes for visible light communication:The state of research[J]. IEEE Wireless Communications, 2015, 22(2):29-35.
[18] Ying K, Yu Z, Baxley R J, et al. Nonlinear distortion mitigation in visible light communications[J]. IEEE Wireless Communications, 2015, 22(2):36-45.
[19] Haigh P A, Le S T, Zvanovec S, et al. Multi-band carrierless amplitude and phase modulation for bandlimited visible light communications systems[J]. IEEE Wireless Communications, 2015, 22(2):46-53.
[20] Gao Q, Gong C, Li S, et al. DC-informative modulation for visible light communications under lighting constraints[J]. IEEE Wireless Communications, 2015, 22(2):54-60.
[21] Wang S W, Chen F, Liang L, et al. A high-performance blue filter for a white-led-based visible light communication system[J]. IEEE Wireless Communications, 2015, 22(2):61-67.
[22] Li H, Chen X, Guo J, et al. An analog modulator for 460 Mb/s visible light data transmission based on OOK-NRS modulation[J]. IEEE Wireless Communications, 2015, 22(2):68-73.
[23] Teng D, Wu M, Liu L, et al. Size-and current-density-controlled tunable wavelength in gan-based LEDs for potential dense wavelength-division multiplexing application[J]. IEEE Wireless Communications, 2015, 22(2):74-79.
[24] Lim J. Ubiquitous 3D positioning systems by LED-based visible light communications[J]. IEEE Wireless Communications, 2015, 22(2):80-85.
[25] Wang M, Wu J, Yu W, et al. Efficient coding modulation and seamless rate adaptation for visible light communications[J]. IEEE Wireless Communications, 2015, 22(2):86-93.
[26] Wang Q, Giustiniano D, Puccinelli D. An open source research platform for embedded visible light networking[J]. IEEE Wireless Communications, 2015, 22(2):94-100.
[27] Wang Y G, Tao L, Huang X X, et al. 8-Gb/s RGBY LED based WDM VLC system employing high-order CAP modulation and hybrid post equalizer[J]. IEEE Photonics Journal, 2015,7(6):7904507.
[28] 徐正元, 赵春明, 王昭诚, 等. 光联万物:宽光谱无线光通信技术[J]. 科技纵览, 2017(5):68-70. Xu Zhengyuan, Zhao Chunming, Wang Zhaocheng, et al. Optics links everything:Wide spectrum wireless optical communication technology[J]. IEEE Spectrum, 2017(5):68-70.
[29] Li H L, Chen X B, Guo J Q, et al. 200 Mbit/s visible optical wireless transmission based on NRZ-OOK modulation of phosphorescent white LED and a pre-emphasis circuit[J]. Chinese Optics Letters, 2014, 12(10):100604(1-4).
[30] Chen X L, Li H L, Min H Y, et al. Real time transmission technology of 610 Mbps visible light communication utilizing phosphor-based LED[C]//Asia Communications and Photonics Conference 2017. Washington, D C:Optical Society (OSA), 2017:M1G.7.
[31] Li H L, Zhang Y N, Chen X B, et al. 682 Mbit/s phosphorescent white LED visible light communications utilizing analog equalized 16QAM-OFDM modulation without blue filter[J]. Optics Communications, 2015, 354:107-111.
文章导航

/