综述文章

Pickering乳液稳定性研究进展

  • 杨传玺 ,
  • 王小宁 ,
  • 杨诚
展开
  • 1. 中国农业大学资源与环境学院, 北京 100193;
    2. 东北大学机械工程与自动化学院, 沈阳 110819;
    3. 山东师范大学物理与电子科学学院, 济南 250014
杨传玺,博士研究生,研究方向为环境纳米材料,电子信箱:yangchuanxi1989@hotmail.com

收稿日期: 2017-07-10

  修回日期: 2017-09-08

  网络出版日期: 2018-03-28

基金资助

国家自然科学基金项目(11474187);山东省自然科学基金项目(ZR2016AM19)

Research progress on the stability of Pickering emulsion

  • YANG Chuanxi ,
  • WANG Xiaoning ,
  • YANG Cheng
Expand
  • 1. College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China;
    2. School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China;
    3. School of Physics and Electronics, Shandong Normal University, Jinan 250014, China

Received date: 2017-07-10

  Revised date: 2017-09-08

  Online published: 2018-03-28

摘要

Pickering乳液由于具有独特的界面粒子膜、环境响应性等优势,在化工新型材料和催化材料领域获得广泛应用。本文对Pickering乳液稳定机理进行综述,指出影响Pickering乳液稳定性的3个关键因子分别为界面张力、三相接触角和粒子粒径,阐明了固体颗粒表面润湿性、固体颗粒浓度、水相电解质、水相pH值、油水相体积比等因素通过固体颗粒界面膜理论和三维黏弹粒子网络机理对Pickering乳液稳定性的影响。

本文引用格式

杨传玺 , 王小宁 , 杨诚 . Pickering乳液稳定性研究进展[J]. 科技导报, 2018 , 36(5) : 70 -76 . DOI: 10.3981/j.issn.1000-7857.2018.05.008

Abstract

In recent years, great attention was paid to the Pickering emulsion in the field of new chemical materials and catalytic materials due to its unique interfacial particle layer and stimuli-responsiveness. In this paper, the stabilization mechanism of the Pickering emulsion is reviewed. Three key factors are identified:the interfacial tension, the triple-phase contact angle, and the particle grain size. The influential factors of the Pickering emulsion stability are comprehensively discussed, including the wettability of particles, the particle concentration, the electrolyte in the aqueous phase, the aqueous pH, and the oil/water volume ratio, based on the mechanical barrier mechanism and the three-dimensional viscoelastic particle network mechanism.

参考文献

[1] Wang C, Fu X, Tang C H, et al. Octenylsuccinate starch spherulites as a stabilizer for Pickering emulsions[J]. Food Chemistry, 2017, 227:298-304.
[2] 周君, 乔秀颖, 孙康. Pickering乳液的制备和应用研究进展[J]. 化学通报, 2012, 75(2):99-105. Zhou Jun, Qiao Xiuying, Sun Kang. Advance in the investigations of the preparation and application of Pickering emulsion[J]. Chemistry Bulletin, 2012, 75(2):99-105.
[3] Pera-Titus M, Leclercq L, Clacens J M, et al. Pickering interfacial catalysis for biphasic systems:From emulsion design to green reactions[J]. Angewandte Chemie International Edition, 2015, 54(7):2006-2021.
[4] Chevalier Y, Bolzinger M A. Emulsions stabilized with solid nanoparticles:Pickering emulsions[J]. Colloid Surface A, 2013, 439:23-34.
[5] 杨飞, 王君, 蓝强, 等. Pickering乳状液的研究进展[J]. 化学进展, 2009, 21(7/8):1418-1426. Yang Fei, Wang Jun, Lan Qiang, et al. Research progress on Pickering emulsions[J]. Progress in Chemistry, 2009, 21(7/8):1418-1426.
[6] Wei Z, Yang Y, Yang R, et al. Alkaline lignin extracted from furfural residues for pH-responsive Pickering emulsions and their recyclable polymerization[J]. Green Chemistry, 2012, 14(11):3230-3236.
[7] Yang H, Fu L, Wei L, et al. Compartmentalization of incompatible reagents within pickering emulsion droplets for one-pot cascade reactions[J]. Journal of the American Chemical Society, 2015, 137(3):1362-1371.
[8] Tan Y, Xu K, Liu C, et al. Fabrication of starch-based nanospheres to stabilize Pickering emulsion[J]. Carbohydrate Polymers, 2012, 88(4):1358-1363.
[9] Li W, Chu W L, Jin W, et al. In situ SERS monitored photoactive yellow protein (PYP) chromophore model elimination, nano-catalyzed phenyl redox and I2 addition reactions[J]. RSC Advances, 2016, 6(112):111144-111147.
[10] Chen D T, Han X J, Jin W, et al. Metal nanoparticle catalyzed cyclobutane cleavage reaction[J]. RSC Advances, 2015, 5(122):100722-100724.
[11] Skelhon T S, Grossiord N, Morgan A R, et al. Quiescent water-in-oil Pickering emulsions as a route toward healthier fruit juice infused chocolate confectionary[J]. Journal of Materials Chemistry, 2012, 22(36):19289-19295.
[12] Lagaly G, Reese M, Abend S. Smectites as colloidal stabilizers of emulsions:Ⅱ. Rheological properties of smectite-laden emulsions[J]. Applied Clay Science, 1999, 14(5):279-298.
[13] Czarnecki J, Khristov K, Masliyah J, et al. Application of Scheludko-Exerowa thin liquid film technique to studies of petroleum W/O emulsions[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2017, 519:2-10.
[14] Yang T, Hu Y, Wang C Y, et al. Fabrication of hierarchical macroporous biocompatible scaffolds by combining Pickering high internal phase emulsion templates with three-dimensional printing[J]. ACS Applied Materials & Interfaces, 2017, 9(27):22950-22958.
[15] Zhang L, Li Z B, Wang L, et al. High temperature stable w/o emulsions prepared with in-situ hydrophobically modified rodlike sepiolite[J]. Journal of Colloid and Interface Science, 2017, 493:378-384.
[16] Yi W Y, Wu H, Wang H T, et al. Interconnectivity of macroporous hydrogels prepared via graphene oxide-stabilized Pickering high internal phase emulsions[J]. Langmuir, 2016, 32(4):982-990.
[17] Ji Y F, Kang W, Hu L L, et al. Study on shearing resistance and the stability of o/w emulsion of the inclusive and hydrophobic association systems by activation energy methodology[J]. Journal of Polymer Research, 2014, 21(8):517.
[18] Tian J, Jin J, Zheng F, et al. Self-assembly of gold nanoparticles and polystyrene:a highly versatile approach to the preparation of colloidal particles with polystyrene cores and gold nanoparticle coronae[J]. Langmuir, 2010, 26(11):8762-8768.
[10] Pi G L, Mao L L, Bao M T, et al. Preparation of oil-in-seawater emulsions based on environmentally benign nanoparticles and biosurfactant for oil spill remediation[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(11):2686-2693.
[20] Finkle P, Draper H D, Hildebrand J H. The theory of emulsification1[J]. Journal of the American Chemical Society, 1923, 45(12):2780-2788.
[21] Binks B P, Lumsdon S O. Influence of particle wettability on the type and stability of surfactant-free emulsions[J]. Langmuir, 2000, 16(23):8622-8631.
[22] Liu H, Gao Q, Liu H, et al. Facile preparation of core-shell nanocomposite microgels[J]. Journal of Macromolecular Science, 2014, 53(1):52-66.
[23] Denkov N D, Ivanov I B, Kralchevsky P A, et al. A possible mechanism of stabilization of emulsions by solid particles[J]. Journal of Colloid and Interface Science, 1992, 150(2):589-593.
[24] Kaptay G. On the equation of the maximum capillary pressure induced by solid particles to stabilize emulsions and foams and on the emulsion stability diagrams[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2006, 282:387-401.
[25] Tavacoli J W, Katgert G, Kim E G, et al. Size limit for particle-stabilized emulsion droplets under gravity[J]. Physical Review Letters, 2012, 108(26):268306.
[26] Aveyard R, Binks B P, Clint J H. Emulsions stabilised solely by colloidal particles[J]. Advances in Colloid and Interface Science, 2003, 100:503-546.
[27] 易成林, 杨逸群, 江金强, 等. 颗粒乳化剂的研究及应用[J]. 化学进展, 2011, 23(1):65-79. Yi Chenglin, Yang Yiqun, Jiang Jinqiang, et al. Research and application of particle emulsifiers[J]. Progress in Chemistry, 2011, 23(1):65-79.
[28] Binks B P, Rodrigues J A. Inversion of emulsions stabilized solely by ionizable nanoparticles[J]. Angewandte Chemie,2005, 117(3):445-448.
[29] Lagaly G, Reese M, Abend S. Smectites as colloidal stabilizers of emulsions:I. Preparation and properties of emulsions with smectites and nonionic surfactants[J]. Applied Clay Science, 1999, 14(1):83-103.
[30] Akartuna I, Studart A R, Tervoort E, et al. Stabilization of oilin-water emulsions by colloidal particles modified with short amphiphiles[J]. Langmuir, 2008, 24(14):7161-7168.
[31] Stiller S, Gers-Barlag H, Lergenmueller M, et al. Investigation of the stability in emulsions stabilized with different surface modified titanium dioxides[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2004, 232(2):261-267.
[32] Yin G, Zheng Z, Wang H, et al. Slightly surface-functionalized polystyrene microspheres prepared via Pickering emulsion polymerization using for electrophoretic displays[J]. Journal of Colloid and Interface Science, 2011, 361(2):456-464.
[33] Binks B P, Whitby C P. Silica particle-stabilized emulsions of silicone oil and water:aspects of emulsification[J]. Langmuir, 2004, 20(4):1130-1137.
[34] Liu H, Wang C, Zou S, et al. Facile fabrication of polystyrene/halloysite nanotube microspheres with core-shell structure via Pickering suspension polymerization[J]. Polymer Bulletin, 2012, 69(7):765-777.
[35] Binks B P, Lumsdon S O. Stability of oil-in-water emulsions stabilised by silica particles[J]. Physical Chemistry Chemical Physics, 1999, 1(12):3007-3016.
[36] Yang F, Liu S, Xu J, et al. Pickering emulsions stabilized solely by layered double hydroxides particles:The effect of salt on emulsion formation and stability[J]. Journal of Colloid and Interface Science, 2006, 302(1):159-169.
[37] Tang J, Quinlan P J, Tam K C. Stimuli-responsive Pickering emulsions:recent advances and potential applications[J]. Soft Matter, 2015, 11(18):3512-3529.
[38] Amalvy J I, Armes S P, Binks B P, et al. Use of sterically-stabilised polystyrene latex particles as a pH-responsive particulate emulsifier to prepare surfactant-free oil-in-water emulsions[J]. Chemical Communications, 2003(15):1826-1827.
[39] Ikem V O, Menner A, Bismarck A. High internal phase emulsions stabilized solely by functionalized silica particles[J]. Angewandte Chemie International Edition, 2008, 47(43):8277-8279.
[40] Ikem V O, Menner A, Bismarck A. Tailoring the mechanical performance of highly permeable macroporous polymers synthesized via Pickering emulsion templating[J]. Soft Matter, 2011, 7(14):6571-6577.
[41] Hermant M C, Klumperman B, Koning C E. Conductive Pickering-poly (high internal phase emulsion) composite foams prepared with low loadings of single-walled carbon nanotubes[J]. Chemical Communications, 2009(19):2738-2740.
[42] Ni D Z, Wang L, Sun Y H, et al. Amphiphilic hollow carbonaceous microspheres with permeable shells[J]. Angewandte Chemie International Edition, 2010, 49(25):4223-4227.
[43] 刘悦, 陈朝霞, 段兰兰, 等. Pickering乳液聚合制备聚合物/GO复合乳液研究进展[J]. 胶体与聚合物, 2015(2):93-96. Liu Yue, Chen Zhaoxia, Duan Lanlan et al. Research progress of polymer/GO composite emulsion in Pickering emulsion polymerization[J]. Chinese Journal of Colloid and Polymer, 2015(2):93-96.
[44] Ge S J, Xiong L, Li M, et al. Characterizations of Pickering emulsions stabilized by starch nanoparticles:Influence of starch variety and particle size[J]. Food Chemistry, 2017, 234:339-347.
[45] Fan J B, Huang C, Jiang L, et al. Nanoporous microspheres:from controllable synthesis to healthcare applications[J]. Journal of Materials Chemistry B, 2013, 1(17):2222-2235.
文章导航

/