研究论文

COSMIC电离层光度计观测数据反演峰值电子密度的算法与结果

  • 江芳 ,
  • 付利平 ,
  • 王咏梅
展开
  • 中国科学院国家空间科学中心, 北京 100190
江芳,副研究员,研究方向为中高层大气光学遥感技术,电子信箱:jiangf@nssc.ac.cn

收稿日期: 2017-05-20

  修回日期: 2017-10-24

  网络出版日期: 2018-03-28

基金资助

国家自然科学基金项目(41005013)

Retrieval algorithm and results from the COSMIC tiny ionospheric photometer measurement

  • JIANG Fang ,
  • FU Liping ,
  • WANG Yongmei
Expand
  • National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China

Received date: 2017-05-20

  Revised date: 2017-10-24

  Online published: 2018-03-28

摘要

利用COSMIC小型电离层光度计测量的135.6 nm夜气辉辐射强度数据,反演得到峰值电子密度,并与地基垂测仪的观测结果进行比对。结果表明,受到来自130.4 nm波段和长波(近紫外至可见)波段杂散光的影响,电离层光度计测得的135.6 nm夜气辉辐射强度数据须进行带外杂散光修正,修正后的数据反演得到的峰值电子与垂测仪观测结果有较好一致性。

本文引用格式

江芳 , 付利平 , 王咏梅 . COSMIC电离层光度计观测数据反演峰值电子密度的算法与结果[J]. 科技导报, 2018 , 36(5) : 85 -91 . DOI: 10.3981/j.issn.1000-7857.2018.05.010

Abstract

The peak electron density of the 135.6 nm nightglow radiation data by COSMIC tiny ionospheric photometer measurement is retrieved. The peak electron density values from the tiny ionospheric photometer and the ionosonde observation are compared. The results show that the 135.6 nm nightglow radiative intensity values must be revised to suppress the influences of the 130.4 nm band and the near ultraviolet upto visible wavelength radiation. The retrieval results from the revised data have good consistency.

参考文献

[1] Chra S, Reed E I, Meier R R, et al. Remote sensing of the ionospheric F layer by use of OI 6300-Å and O I 1356-Å observations[J]. Journal of Geophysical Research, 1975, 80(16):2327-2332.
[2] Tinsley B A, Bittencourt J A. Determination of F region height and peak electron density at night using airglow emissions from atomic oxygen[J]. Journal Geophysics Research, 1991, 80(16):2333-2337.
[3] Meier R R. Ultraviolet spectroscopy and remote sensing of the upper atmosphere[J]. Space Science Reviews, 1991, 58(1):1-185.
[4] Dymond K F, Thonnard S E, McCoy R P, et al. A technique for determining F region electron densities using optical measurements of recombination radiation[J]. Proceedings of the Ionospheric Effects Symposium, 1996, 316-353.
[5] Dymond K F, Thonnard S E, McCoy R P, et al. An optical remote sensing technique for determining nighttime F region[J]. Radio Science, 1997, 32(5):1985-1996.
[6] Dymond K F, Budzen S A, Coker C, et al.The Tiny Ionospheric Photometer (TIP) on the constellation observing system for meteorology, ionosphere, and climate (COSMIC/FORMOSAT-3)[J]. Journal of Geophysics Research of Space Physics, 2016, 121:10614-10622.
[7] Coker C, Dymond K F, Budzien SA, et al. Observations of the ionosphere using the Tiny Ionospheric Phtometer[J]. Terrestrial Atmoshperic and Oceanic Sciences, 2009, 20, Doi:10.3319/TAO.2008.01.18.02(F3C).
[8] DeMajistre R, Paxton L J, Morrison D, et al. Retrievals of nighttime electron density from Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMMED) mission Global Ultraviolet Imager (GUVI) measurements[J]. Journal of Geophysics Research of Space Physics, 2001, 109:A5.
[9] 江芳, 毛田, 李小银, 等. 利用OI135.6 nm夜气辉辐射探测电离层峰值电子密度及电子总含量的研究[J]. 地球物理学报, 2014, 57(11):3679-3687. Jiang Fang, Mao Tian, Li Xiaoyin, et al. The research on NmF2 and TEC derived from nighttime OI 135.6 nm emission measurement[J]. Chinese Journal of Geophysics, 2014, 57(11):3679-3687.
[10] Tsai L C, Liu C H, Hsiao T Y. Profiling of Ionospheric Electron Density Based on FormoSat-3/COSMIC Data:Results from the Intense Observation Period Experiment[J]. Terrestrial Atmospheric & Oceanic Sciences, 2009, 20(1):181-191.
[11] 徐美兰. 电离层1356埃大气辉光之研究[D]. 台湾桃园:中央大学, 2008. Xu Meilan. The research of 1356A atmospheric airglow at ionospheric[D]. Taoyuan:Central University, 2008.
[12] Rajesh P K, Liu J Y, Hsu M L, et al. Ionospheric electron content and NmF2 from nighttime OI 135.6 nm intensity[J]. Journal of Geophysical Research Atmospheres, 2011, 116(A2):1-11.
[13] Dymond K F, Thomas R J. A technique for using measured ionospheric density gradients and GPS occultations for inferring the nighttime ionospheric electron density[J]. Radio Science, 2016, 36(5):1141-1148.
[14] Meier R R. Ultraviolet spectroscopy and remote sensing of the upper atmosphere[J]. Space Science Reviews, 1991, 58:1-185.
[15] Strickland D J, Donahue T M. Excitation and radiative trausport of OI 1304A resonance radiation:The dayglow[J]. Planetary and Space Science, 1970, 18(5):661-689.
[16] Hedin A E. MISIS-86 thermospheric model[J]. Journal of Geophysical Research, 1987, 92(A5):4619-4664.
[17] Bilitza D. International reference ionosphere[R]. 1990 NSSDC WDC-A-RAS, 90-20. Greenbelt, MD:National Space, Science Data Center, 1990.
[18] Chamberlain J W, Smoluchowski R. Theory of planetary atmospheres:An introduction to their physics and chemistry (Int. Geophysics Series, Vol 22)[J]. Physics Today, 1978, 68(51):126-126.
[19] Budzien S, C hua D, Coker C, et al. Evolved Tiny Ionospheric Photometer (ETIP):A sensor for ionspheric specification 2010 Decadal Strategy for Solar and Space Physics[M]. Washington, DC:National Academies Press, 2010.
[20] Budzien S, Dymond K, Coker C, et al. Tiny Ionospheric Photometers on FORMOSAT-3/COSMIC:on-orbit performance[C]//SPIE Optical Engineering Applications. International Society for Optics and Photonics, 2009.
[21] Dymond K F, Budzien S A, Chua D, et al. Tomographic Reconstruction of the Low-latitude Nighttime Electron Density Using COMSIC/FORMOSAT-3 Radio Occultation and UV Photometer Data[J]. Terrestrial Atmospheric & Oceanic Sciences, 2009, 20(1):215-226.
文章导航

/