针对中国南海海底浅层含天然气水合物沉积物泥质粉砂岩和粉砂岩,采用超声波探测和模拟实验,研究了不同水合物饱和度与围压条件下两类沉积物的声波响应特征及差异。结果表明,围压变化条件下,两类沉积物的声波速度随围压升高而增大,围压升高至饱和点后两类沉积物的声波速度不再变化,两者的围压饱和点相差7~10 MPa;水合物饱和度变化条件下,两类沉积物的声波速度随水合物饱和度增加而增大,增速呈"慢-快-慢"趋势,其中水合物饱和度20%~40%为声波速度较快增长区间,增幅达22%以上;水合物饱和度相同、围压相同时泥质粉砂岩的声波速度均大于粉砂岩,水合物饱和度与围压变化时对两类沉积物的声波速度影响较大,且对泥质粉砂岩的声波速度影响程度大于粉砂岩。
In order to understand the acoustic characteristics and differences of muddy siltstone hydrate sediment (MSHS) and siltstone hydrate sediment (SHS) in the shallow seabed of South China Sea, a simulation experiment is conducted to investigate the acoustic response characteristics of these two hydrate sediments with the ultrasonic detection technology. The results show that the acoustic velocities of these two hydrate sediments will increase with the increase of effective confining pressure. However, when the effective confining pressure increases to the effective confining pressure saturation point, the acoustic velocities of these two hydrate sediments will not change anymore. Meanwhile, with the increase of hydrate saturation, the effective confining pressure saturation points of these two hydrate sediments will also increase. The effective confining pressure saturation point of MSHS is higher than that of SHS and the difference is between 7-10 MPa. Under the same effective confining pressure, the larger the hydrate saturation, the faster the acoustic velocity for both hydrate sediments, showing a "slow-fast-slow" tendency. The 20%-40% of hydrate saturation is the fast increasing range of the acoustic velocity, with an increase over 22%. The acoustic velocity of MSHS is greater than that of SHS under the same experiment condition. Furthermore, the change of hydrate saturation and effective confining pressure have a great effect on the acoustic velocity of these two hydrate sediments, and acoustic velocity has a greater influence on MSHS than on SHS.
[1] Boswell R. Is gas hydrate energy within reach?[J]. Science, 2009, 325(5943):957-958.
[2] 赵生才. 气体水合物的研究现状与科学问题[J]. 科技导报, 2001, 18(7):11-13. Zhao Shengcai. Present state in the research of gas hydrates and its scientific problems[J]. Science & Technology Review, 2001, 18(7):11-13.
[3] Chong Z R, Yang S H B, Babu P, et al. Review of natural gas hydrates as an energy resource:prospects and challenges[J]. Applied Energy, 2016, 162:1633-1652.
[4] Boswell R, Collett T S. Current perspectives on gas hydrate resources[J]. Energy & Environmental Science, 2011, 4(4):1206-1215.
[5] 张剑. 多孔介质中水合物饱和度与声波速度关系的实验研究[D]. 青岛:中国海洋大学, 2008. Zhang Jian. Experimental study on the relationship between gas hydrate saturation and acoustic velocities in porous media[D]. Qingdao:Ocean University of China, 2008.
[6] 胡高伟. 南海沉积物的水合物声学特性模拟实验研究[D]. 武汉:中国地质大学, 2010. Hu Gaowei. Experimental study on acoustic responses of gas hydrates to sediments from South China Sea[D]. Wuhan:China University of Geosciences, 2010.
[7] 方跃龙, 刘昌岭, 赵仕俊, 等. 天然气水合物声学测试技术[J]. 石油仪器, 2014, 28(6):68-71. Fang Yuelong, Liu Changling, Zhao Shijun, et al. Acoustic testing technique for gas hydrate[J]. Petroleum Instruments, 2014, 28(6):68-71.
[8] 赵仕俊, 徐美, 李申申. 天然气水合物物性分析测试技术[J]. 石油仪器, 2013, 27(4):1-5. Zhao Shijun, Xu Mei, Li Shenshen. Gas hydrate physical property analysis and test technology[J]. Petroleum Instruments, 2013, 27(4):1-5.
[9] Priest J A, Clayton C R I. Seismic properties of methane gas hydrate-bearing sand[C]//Proceedings of 5th Internationl Conference on Gas Hydrate. Miami:Curran Associates Inc, 2005:440-447.
[10] Winters W J, Waite W F, Mason D H, et al. Methane gas hydrate effect on sediment acoustic and strength properties[J]. Journal of Petroleum Science and Engineering, 2007, 56(1-3):127-135.
[11] 胡高伟, 业渝光, 张剑, 等. 沉积物中天然气水合物微观分布模式及其声学响应特征[J]. 天然气工业, 2010, 30(3):120-124. Hu Gaowei, Ye Yuguang, Zhang Jian, et al. Micro-models of gas hydrate and their impact on the acoustic properties of the host sediments[J]. Natural Gas Industry, 2010, 30(3):120-124.
[12] 梁金强, 王宏斌, 苏新, 等. 南海北部陆坡天然气水合物成藏条件及其控制因素[J]. 天然气工业, 2014, 34(7):128-135. Liang Jinqiang, Wang Hongbin, Su Xin, et al. Natural gas hydrate formation conditions and the associated controlling factors in the northern slope of the South China Sea[J]. Natural Gas Industry, 2014, 34(7):128-135.
[13] 于兴河, 王建忠, 梁金强, 等. 南海北部陆坡天然气水合物沉积成藏特征[J]. 石油学报, 2014, 35(2):253-264. Yu Xinghe, Wang Jianzhong, Liang Jinqiang, et al. Depositional accumulation characteristics of gas hydrate in the northern continental slope of South China Sea[J]. Acta Petrolei Sinica, 2014, 35(2):253-264.
[14] 李淑霞, 陈月明, 王晓红, 等. 填砂模型中天然气水合物合成及降压分解实验研究[J]. 油气田地面工程, 2009, 28(7):1-3. Li Shuxia, Chen Yueming, Wang Xiaohong, et al. Experimental research on natural gas hydrates forming and depressurized decomposition in the sand-packed model[J]. Oil-Gas Field Surface Engineering, 2009, 28(7):1-3.
[15] 李明川, 樊栓狮, 赵金洲. 多孔介质中天然气水合物形成实验研究[J]. 天然气工业, 2006, 26(5):27-28. Li Mingchuan, Fan Shuanshi, Zhao Jinzhou. Experimental Study on Formation of Gas Hydrate in Porous Medium[J]. Natural Gas Industry, 2006, 26(5):27-28.
[16] 祁影霞, 杨光, 汤成伟, 等. 天然气水合物合成实验[J]. 低温工程, 2009(4):11-14. Qi Yingxia, Yang Guang, Tang Chengwei, et al. Formation experiment of natural gas hydrate[J]. Cryogenics, 2009(4):11-14.
[17] 李令东, 程远方, 孙晓杰, 等. 水合物沉积物试验岩样制备及力学性质研究[J]. 中国石油大学学报(自然科学版), 2012, 36(4):97-101. Li Lingdong, Cheng Yuanfang, Sun Xiaojie, et al. Experimental sample preparation and mechanical properties study of hydrate bearing sediments[J]. Journal of China University of Petroleum(Edition of Natural Science), 2012, 36(4):97-101.
[18] Ahmadi G, Ji C, Smith D H. Natural gas production from hydrate dissociation:an axisymmetric model[J]. Journal of Petroleum Science and Engineering, 2007, 58(1-2):245-258.
[19] Jr Sloan E D. Clathrate hydrates of natural gases[M]. New York:Marcel Dekker Inc, 1998.
[20] Tinivella U, Accaino F. Compressional velocity structure and Poisson's ratio in marine sediments with gas hydrate and free gas by inversion of reflected and refracted seismic date (South Shetland Islands, Antarctica)[J]. Marine Geology, 2000, 164(1-2):13-27.