研究论文

智能终端续航技术发展趋势

  • 冯翔 ,
  • 杨照坤 ,
  • 张强 ,
  • 苏亚龙 ,
  • 乔赟 ,
  • 刘莎 ,
  • 杨瑞智 ,
  • 孙晓 ,
  • 邱云 ,
  • 王丹
展开
  • 1. 北京京东方显示技术有限公司, 北京 100176;
    2. 鄂尔多斯市源盛光电有限责任公司, 鄂尔多斯 400714
冯翔,高级研究员,研究方向为显示技术及显示周边技术,电子信箱:fengxiang@boe.com.cn

收稿日期: 2017-07-20

  修回日期: 2017-10-17

  网络出版日期: 2018-04-04

Smart devices battery life technology trends

  • FENG Xiang ,
  • YANG Zhaokun ,
  • ZHANG Qiang ,
  • SU Yalong ,
  • QIAO Yun ,
  • LIU Sha ,
  • YANG Ruizhi ,
  • SUN Xiao ,
  • QIU Yun ,
  • WANG Dan
Expand
  • 1. Beijing BOE Display Technology Co., Ltd., Beijing 100176, China;
    2. Ordos Yuansheng Optoelectronics Co., Ltd., Ordos 400714, China

Received date: 2017-07-20

  Revised date: 2017-10-17

  Online published: 2018-04-04

摘要

锂离子电池材料技术发展缓慢,导致商用化锂离子电池能量密度的提升难度较大。移动互联网时代的到来,使得智能终端设备的外形向超薄、超轻的便携式发展,为智能终端电池容量和设备续航带来了挑战。为了研究移动智能设备的续航能力,针对智能终端设备所广泛采用的锂离子电池技术,分析了锂离子电池中各个部分的技术情况;通过对智能手机设备的功耗分布和各硬件要素的技术迭代研究,分析了未来智能终端整机的功耗趋势和空间设计趋势。分析表明,智能终端设备显示屏的功耗占整机功耗的主要部分,采用像素渲染技术可以有效降低显示屏模组的逻辑功耗和背光功耗,同时整机印制电路板(PCB)上硬件元素的不断集成,PCB走线工艺能力越来越精细化为电池的体积留出更多的空间。智能终端产品中的多种硬件元素协同优化,可以有效实现可靠的续航能力。

本文引用格式

冯翔 , 杨照坤 , 张强 , 苏亚龙 , 乔赟 , 刘莎 , 杨瑞智 , 孙晓 , 邱云 , 王丹 . 智能终端续航技术发展趋势[J]. 科技导报, 2018 , 36(6) : 97 -104 . DOI: 10.3981/j.issn.1000-7857.2018.06.012

Abstract

The slow development of the lithium ion battery material technology hampers the growth of the energy density of commercial lithium ion batteries. The form of smart devices develops in the direction of portability e.g. ultra-thin and ultra-light along with the arrival of the mobile internet era, which poses a great challenge to the battery capacity and the device stand-by time. This paper reviews the methods of improving the stand-by ability of smart devices, focusing on the technology of the lithium ion battery widely used in smart device and the technical status of the key elements in the lithium ion battery cell. The tendency of the device power consumption and the machine structure design of smartphones are analyzed, including the power consumption distribution and the technical upgrading of the hardware in the smartphone field. The display module is shown to consume most power of a smart device. The logic power consumption and the BLU power consumption could be reduced effectively by using the pixel rendering technology. With the integration in the PCB and the processability of the PCB layout developments of the hardware elements, a larger space in the device will be used for a larger volume battery. The battery life will be prolonged with the multiple coordination and optimization of hardware elements of the smart devices.

参考文献

[1] 周颖, 沈燕秋. 手机发展史[J]. 科技信息, 2010, 30(33):599-600. Zhouying, Shen Yanqiu. Mobile phone development history[J]. Science & Technology Information, 2010, 30(33):599-600.
[2] 李求忠, 陈燕君. 镍氢与镍镉电池的性能及其影响因素[J]. 宁德师专学报(自然科学版), 2010, 22(2):132-136. Li Qiuzhong,Chen Yanjun. Study on performance and influence factors for Ni-MHand Ni-Cd batteries[J]. Journal of Ningde Teachers College (Natural Science), 2010, 22(2):132-136.
[3] 黄学杰. 锂离子电池及相关材料进展[J]. 中国材料进展, 2010, 29(8):46-52. Huang Xuejie. Li-ion battery and its key materials[J]. Materi-als China, 2010, 29(8):46-52.
[4] 李卫, 田文怀, 其鲁. 锂离子电池正极材料技术研究进展[J]. 无机盐工业, 2015, 47(6):1-5. Li Wei, Tian Wenhuai, Qi Lu. Technology research progress of cathode material of lithium ion battery[J]. Inorganic Chemicals Industry, 2015, 47(6):1-5.
[5] 安洪涛. 全球锂离子电池正极材料产业发展分析[J]. 矿业工程, 2015, 35(6):149-158. An Hongtao. Industry development analysis forthe global Liion battery cathode material[J]. Mining and Metallurgical Engi-neering, 2015, 47(6):1-5.
[6] 贾冬梅. 锂离子电池正极材料市场分析[J]. 精细与专用化学品, 2012, 20(4):37-41. Jia Dongmei. Market analysis of cathode materials for lithium ion batteries[J]. Fineand Specialty Chemicals, 2012, 20(4):37-41.
[7] Kim T H, Park J S, Chang S K, et al. The current move of lithi-um ion batteries towards the next phase[J]. Advanced Energy Materials, 2012, 2(7):860-872.
[8] 郭红霞, 乔月纯, 穆培振. 锂离子电池正极材料研究与应用进展[J]. 无机盐工业, 2016, 48(3):5-8. Guo Hongxia, Qiao Yuechun, Mu Peizhen. Progress in research and application of cathode materials for lithium-ion battery[J]. Inorganic Chemicals Industry, 2016, 48(3):5-8.
[9] 蔡奕茗, 蔡奕荃. 锂离子电池正极材料研究[J]. 广东化工, 2017,44(5):136-137. Cai Yiming, Cai Yiquan. Study on cathode materials for lithium ion battery[J]. Guangdong Chemical Industry, 2017, 44(5):136-137.
[10] 王健, 钟胜奎, 刘乐通. 锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2研究进展[J]. 化工新型材料, 2009, 37(9):18-21. Wang Jian, Zhong Shengkui, Liu Letong. Research progress of LiNi1/3Co1/3Mn1/3O2 ascathode materials for Li-ion battery[J]. New Chemical Materials, 2009, 37(9):18-21.
[11] Deng C, Liu L, Zhou W, et al. Effect of synthesis condition on the structure and electrochemical properties of Li[Ni1/3Co1/3Mn1/3] O2 prepared by hydroxide co-precipitation method[J]. Electrochim Acta, 2008, 53(5):2441-2447.
[12] Ding C X, Meng Q S, Wang L, et al. Synthesis, structure, and electrochemical characteristics of LiNi1/3Co1/3Mn1/3O2 prepared by thermal polymerization[J]. Materials Research Bulletin, 2009, 44(3):492-498.
[13] Li H J, Chen G, Zhang B, et al. Advanced electrochemical performance of Li[Ni1/3-xFexCo1/3Mn1/3] O2 as cathode materials for lithium-ion battery[J]. Solid State Communications, 2008, 146(3/4):115-120.
[14] 徐群杰, 周罗增, 刘明爽, 等. 锂离子电池三元正极材料[LiNi-Co-Mn-O]的研究进展[J]. 上海电力学院学报, 2012, 28(2):143-148. Xu Qunjie, Zhou Luozeng, Liu Mingshuang, et al. Research progress in cathode material of Li-Ni-Co-Mn-O for lithium ion battery[J]. Journal of Shanghai University of Electric Pow-er, 2012, 28(2):143-148.
[15] 陈玉红. 锂离子电池LiCo1/3Ni1/3Mn1/3O2正极材料及安全性的研究[D]. 天津:天津大学化工学院, 2006. Chen Yuhong. Investigation on LiCo1/3Ni1/3Mn1/3O2 cathode mate-rial and safety of lithium-ion battery[D]. Tianjin:School of Chemical Engineering and Technology, Tianjin University, 2006.
[16] Lu D. Problems of ternary materials[EB/OL]. (2017-02-20)[2017-07-10]. http://www.eeworld.com.cn/qcdz/article_2017022016975.html.
[17] 雷雨. 高电压钴酸锂正极材料包覆改性的研究进展[J]. 化学工业, 2016, 34(3):31-35. Lei Yu. Research progress in coating modification of cathode materials for high voltage lithium cobalt oxide[J]. Chemical In-dustry, 2016, 34(3):31-35.
[18] 尚怀芳, 李彪, 马进, 等. 锂离子电池富锂正极材料表面包覆的研究进展[J]. 新材料产业, 2013(6):45-49. Shang Huaifang, Li Biao, Ma Jin, et al. Research progress in surface coating of Li rich cathode materials for lithium ion batteries[J]. Advanced Materials Industry, 2013(6):45-49.
[19] 万南.骁龙835正式公布:8核2.45 GHz 10 nm功耗暴降25%[EB/OL]. (2017-01-04)[2017-07-10]. http://news.mydrivers.com/1/514/514407.htm. Wan Nan. Snapdragon 835 officially announced:8 core 2.45 GHz 10 nm power consumption dropped 25%[EB/OL]. (2017-01-04)[2017-07-10]. http://news.mydrivers.com/1/514/514407.htm.
[20] A slimmer yet more powerful mobile[R/OL].[2017-07-20]. http://www.samsung.com/semiconductor/global/file/insight/2016/03/SolutionBrief_for_Smartphone-0.pdf.
[21] 方竞. 消费锂电行业深度报告[EB/OL]. (2017-06-22)[2017-07-10]. http://www.yangqiu.cn/ICshare/2922834.html. Fang Jing. The consumption of lithium industry depth report[EB/OL]. (2017-06-22)[2017-07-10]. http://www.yangqiu.cn/ICshare/2922834.html.
[22] 邱鑫. 直击最痛点——50款手机续航横评测试结果[EB/OL]. (2016-06-30)[2017-07-10]. http://mobile.zol.com.cn/590/5903346.html. Qiu Xin. Direct hit the most painful point:50 mobile phone life assessment test results[EB/OL]. (2016-06-30)[2017-07-10].http://mobile.zol.com.cn/590/5903346.html.
[23] He S T, Liu Y X, Zhou H C. Optimizing smartphone power consumption through dynamic resolution scaling[C]//Proceed-ings of the 21st Annual International Conference on Mobile Computing and Networking. New York:ACM, 2015:27-39.
[24] 数据告诉你手机屏幕越来越大的发展趋势[EB/OL]. (2015-01-20)[2017-07-10]. http://cd.qq.com/a/20150120/018645.htm. The data tell you the growing trend of mobile phone screens[EB/OL]. (2015-01-20)[2017-07-10]. http://cd.qq.com/a/20150120/018645.htm.
[25] 续航已成智能手机用户抱怨的头号问题[EB/OL]. (2013-11-30)[2017-07-10]. http://tech.sina.com.cn/mobile/n/2013-11-30/10138963934.shtml. Standby Time has become the number one complaint for smart-phone users[EB/OL]. (2013-11-30)[2017-07-10]. http://tech.sina.com.cn/mobile/n/2013-11-30/10138963934.shtml.
[26] 郭仁炜, 董学. 显示方法和显示装置:CN 103886808 A[P]. 2014-06-25. Guo Renwei, Dong Xue. Display method and display device:CN 103886808 A[P]. 2014-06-25.
[27] Pang H, Rajan K, Silvernail J, et al. Recent progress of flexi-ble AMOLED displays[C]//SPIE Proceedings Advances in Dis-play Technologies; and E-papers and Flexible Displays. Bell-ingham, WA:SPIE, 2011, doi:10.1117/12.880144.
[28] Shih T H, Tsai T T, Chen K C, et al. 9.3:A 32-inch activematrix organic light-emitting diode television panel driving by amorphous indium-gallium-zinc oxide thin-film transistors[J]. SID Symposium Digest of Technical Papers, 2012, 43(1):92-94.
[29] Lee H N, Kyung J, Kang S K, et al. 68.2:3.5 Inch QCIF+ AM-OLED panel based on oxide tft backplane[J]. SID Sympo-sium Digest of Technical Papers, 2007, 38(1):1826-1829.
[30] Nadernejad E, Burini N, Korhonen J. Adaptive local backlight dimming algorithm based on local histogram and image char-acteristics[C]//Proceedings of SPIE Color Imaging XVⅢ:Dis-playing, Processing, Hardcopy, and Applications. Bellingham, WA:SPIE, 2013, doi:0.1117/12.2003119.
文章导航

/