针对青藏高原季冻区某机场道基主要材料砂砾土,通过实验系统地研究了压实度、初始含水率及补水状况对砂砾土冻胀特性的影响规律。结果表明,在封闭条件下,若初始含水率不变,则砂砾土冻胀率随压实度的增加呈先增大后减小的趋势,在压实度为95%左右时达到最大值,若压实度不变,则冻胀率随初始含水率的增加呈线性增大;压实度和初始含水率均与冻胀率之间存在高度相关的函数关系,这些关系式在某些情况下可用于相关指标的相互预测。在开放条件下,砂砾土的冻胀率较封闭条件下显著增大,通常达3~4倍以上。为有效防治砂砾土冻胀,应严格控制压实度和初始含水率,同时采用降低地下水位、设置隔水垫层等措施阻止外界水源补充。
In order to see the influence of the compaction degree and the moisture on the frost heaving properties of the gravel soil in the seasonally frozen region of Qinghai-Tibetan Plateau, and provide a foundation for the prevention and the control of the soil frost heaving, a series of frost-heaving ratio indoor tests with improved test devices are conducted to study the influence of the compaction degree, the initial moisture content and the water replenishing on the frost-heaving ratio. It is shown that, the frost-heaving ratio of the gravel soil decreases after the first increase with the increase of the compaction degree, with its maximum at the compaction degree of 95% under the closed condition and with the same initial moisture content, and it increases linearly with the increase of the initial moisture content under the closed condition and with the same compaction degree. There are highly related functional relationship between the compaction degree, the initial moisture content and the frost-heaving ratio, which can be used to forecast related indicators in some cases. The frost-heaving ratio increases over several times under the open condition than under the closed condition. It is necessary to reduce the underground water level, to set the water-resisting layer, and to strictly control the compaction degree and the initial moisture content for the effective prevention and control of the soil frost.
[1] Everett D H. The thermodynamics of frost damage to porous solids[J]. Transaction Faraday Society, 1961, 57:1541-1551.
[2] Miller R D. Lens initiation in secondary heaving[C]//Proceed-ings of the International Symposium on Frost Action in Soils. Luleaa, Sweden, 1977:68-74.
[3] 徐学祖, 邓友生. 冻土中水分迁移的试验研究[M]. 北京:科学出版社, 1991. Xu Xuezu, Deng Yousheng. Experimental study of moisture mi-gration in permafrost[M]. Beijing:Science Press, 1991.
[4] 杨锐, 王肖戎, 许金余. 高寒地区机场道面基层底面冻胀应力的计算[J]. 空军工程大学学报(自然科学版), 2007, 8(3):4251-4257. Yang Rui, Wang Xiaorong, Xu Jinyu. Calculation of frost heave stress on the airport pavement base bottom in frigid area[J]. Journal of Air Force Engineering University(Natural Science Edition), 2007, 8(3):4251-4257.
[5] 孙兵, 仇文革, 周超. 饱和粘土三轴冻胀应力-应变关系试验研究[J]. 西南交通大学学报, 2009, 44(2):177-180. Sun Bing, Qiu Wenge, Zhou Chao. Experimental investigation on triaxial frost heaving stress strain relationship of saturated clay[J]. Journal of Southwest Jiaotong University, 2009, 44(2):177-180.
[6] 于琳琳, 徐学燕, 吉植强. 不同人工冻结方向条件下土的冻胀试验研究[J]. 四川大学学报(工程科学版), 2009, 41(6):58-62. Yu Linlin, Xu Xueyan, Ji Zhiqing. Test research on frost h eave by artificial freezing with different freezing directions[J]. Journal of Sichuan University(Engineering Science Edition), 2009, 41(6):58-62.
[7] Yu L L, Xu X Y, Ma C. Combination effect of seasonal freez-ing and artificial freezing on frost heave of silty clay[J]. Jour-nal of Central South University, 2010, 17:163-168.
[8] 程培峰, 尹传军. 季冻区粉质黏土冻胀特性分析[J]. 公路交通科技, 2014, 31(1):44-49. Cheng Peifeng, Yin Chuanjun. Analysis of frost heaving char-acteristics of silty clay in seasonal frozen region[J]. Journal of Highway and Transportation Research and Development, 2014, 31(1):44-49.
[9] 彭丽云, 刘建坤, 田亚护. 粉质粘土的冻胀特性研究[J]. 水文地质工程地质, 2016(9):62-67. Peng Liyun, Liu Jiankun, Tian Yahu. Study on frost heaving property of silty caly[J]. Hydrogeology and Engineering Geolo-gy, 2016(9):62-67.
[10] 李强, 姚仰平, 韩黎明, 等. 土体的"锅盖效应"[J]. 工业建筑, 2014, 44(2):69-71. Li Qiang, Yao Yangping, Han Liming, et al. Pot-cover effect of soil[J]. Industrial Construction, 2014, 44(2):69-71.
[11] 王永涛, 王大雁, 郭妍, 等. 青藏粉土单向冻结冻胀率变化特性研究[J]. 冰川冻土, 2016, 38(2):409-415. Wang Yongtao, Wang Dayan, Guo Yan, et al. Experimental study of the development characteristic of frost heaving ratio of the saturated Tibetan silt under one-dimensional freezing[J]. Journal of Glaciology and Geocrylogy, 2016, 38(2):409-415.
[12] 岑国平, 龙小勇, 洪刚, 等. 青藏高原季冻区砂砾土冻胀特性试验[J]. 哈尔滨工业大学学报, 2016. 48(3):53-59. Cen Guoping, Long Xiaoyong, Hong Gang, et al. Frost heav-ing properties of gravel soil in seasonal frozen region of Qing-hai-Tibet Plateau[J]. Journal of Harbin Institute of Technolo-gy, 2016. 48(3):53-59.
[13] 王青志, 刘建坤, 田亚护, 等. 寒区级配碎石冻胀正交试验研究[J]. 岩土力学, 2007, 36(10):2825-2836. Wang Zhiqing, Liu Jiankun, Tian Yahu, et al. A study of or-thogonal design tests on frost-heaving characteristics of grad-ed crushed rock[J]. Rock and Soil Mechanics, 2007, 36(10):2825-2836.
[14] 夏琼, 窦顺, 赵成江. 兰新铁路路基冻结过程中水分迁移及冻胀规律试验研究[J]. 中国铁道科学, 2012, 33(5):1-7. Xia Qiong, Dou Shun, Zhao Chengjiang. Experimental study on water migration and frost heaving rules during the freezing process of subgrade in Lanzhou-Xinjiang railway[J]. China Railway Science, 2012, 33(5):1-7.
[15] 中华人民共和国交通部. JTG E40-2007公路土工试验规程[S]. 北京:人民交通出版社, 2007. The Ministry of Communications of the People's Republic of China. JTG E40-2007 Test methods of soils for highway en-gineering[S]. Beijing:China Communication Press, 2007.
[16] 汪恩良, 徐学燕. 白浆土冻胀特性试验研究[J]. 岩土工程学报, 2004, 26(6):851-853. Wang Enliang, Xu Xueyan. An experimental study on frostheave characteristics of albic soil[J]. Chinese Journal of Geo-technical Engineering, 2004, 26(6):851-853.
[17] 岑国平, 龙小勇, 洪刚, 等. 含泥量对砂砾土冻胀特性的影响[J]. 科技导报, 2015. 33(5):78-82. Cen Guoping, Long Xiaoyong, Hong Gang, et al. Influence of silt content on frost heaving properties of gravel soil[J]. Sci-ence and Technology Review, 2015, 33(5):78-82.