科技纵横

轮椅上的宇宙——霍金的学术贡献及影响

  • 蔡荣根 ,
  • 曹利明 ,
  • 杨涛
展开
  • 1. 中国科学院理论物理研究所, 中国科学院理论物理重点实验室, 北京 100190;
    2. 中国科学院大学, 北京 100049;
    3. 中国科学技术大学物理学院, 合肥 230026;
    4. 北京师范大学天文系, 北京 100875
蔡荣根,研究员,研究方向为引力理论与宇宙学,电子信箱:cairg@itp.ac.cn;曹利明(共同第一作者),教授,研究方向为引力理论与宇宙学,电子信箱:caolm@ustc.edu.cn;杨涛(共同第一作者),博士后,研究方向为天体物理与宇宙学,电子信箱:yangtao2017@bnu.edu.cn

收稿日期: 2018-03-20

  修回日期: 2018-04-04

  网络出版日期: 2018-04-27

基金资助

国家自然科学基金重大项目(11690022);国家自然科学基金项目(11622543,21010023088)

The universe on wheelchair: A brief introduction to Stephen Hawking's academic contributions and influences

  • CAI Ronggen ,
  • CAO Liming ,
  • YANG Tao
Expand
  • 1. CAS Key Laboratory of Theoretical Physics;Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China;
    4. Department of Astronomy, Beijing Normal University, Beijing 100875, China

Received date: 2018-03-20

  Revised date: 2018-04-04

  Online published: 2018-04-27

摘要

梳理了霍金的科学贡献及其对相关领域的影响。以时间为序回顾了霍金在经典引力、黑洞热力学及量子宇宙学等领域的巨大科学贡献,并介绍了这些学术工作对引力的全息性质、引力波物理等方面的启发和影响。当然这些包括霍金最为重要的工作,即1974年关于黑洞辐射和黑洞热力学的研究。这一工作影响深远,为人类理解宇宙尤其是引力的本质打开了一扇明亮的窗口。

本文引用格式

蔡荣根 , 曹利明 , 杨涛 . 轮椅上的宇宙——霍金的学术贡献及影响[J]. 科技导报, 2018 , 36(7) : 14 -19 . DOI: 10.3981/j.issn.1000-7857.2018.07.002

Abstract

In this article we give a brief introduction of Stephen Hawking's main academic contributions and their influences on related subjects. First, we introduce Hawking's accomplishments in his academic jobs such as classic gravity, black hole thermodynamics and quantum cosmology. Then we introduce his academic influences on other related subjects such as the holographic principle of gravity and the gravitational wave physics.

参考文献

[1] Hawking S W. Properties of expanding universes[D]. Cambridge:Cambridge University, 1966.
[2] Bondi H, van der Burg M G J, Metzner A K W. Gravitational waves in general relativity, VⅡ. Waves from axisymmetric isolated systems[J]. Proceedings of the Royal Society A, 1962, 269:21-52.
[3] Oppenheimer J R, Snyder H. On continued gravitational contraction[J]. Physical Review, 1939, 56:455-459.
[4] Penrose R. Gravitational collapse and space-time singularities[J]. Physical Review Letters, 1965, 14:57-59.
[5] Hawking S W, Penrose R. The Singularities of gravitational collapse and cosmology[J]. Proceedings of the Royal Society A, 1970, 314:529-548.
[6] Ruffini R. Wheeler J A. Introducing the black hole[J]. Physics Today, 1971, 24(1):30.
[7] Israel W. Events horizons in static vacuum space-times[J]. Physical Review D, 1967, 164:1776-1779.
[8] Israel W. Event horizons in static electrovac space-times[J]. Communications in Mathematical Physics, 1968, 8:245-260.
[9] Carter B. Axisymmetric black hole has only two degrees of freedom[J]. Physical Review Letters, 1971, 26:331-333.
[10] Hawking S W. Black holes in general relativity[J]. Communications in Mathematical Physics, 1972, 25:152-166.
[11] Robinson D C. Uniqueness of the Kerr black hole[J]. Physical Review Letters, 1975, 34:905-906.
[12] Mazur P O. Proof of uniqueness of the Kerr-Newman black hole solution[J]. Journal of Physics A, 1982, 15:3173-3180.
[13] Bunting G. Proof of the uniqueness conjecture for black holes[D]. Armidale:University of New England, 1983.
[14] Bardeen J M, Carter B, Hawking S W. The four laws of black hole mechanics[J]. Communications in Mathematical Physics, 1973, 31:161-170.
[15] LIGO Scientific and Virgo Collaborations. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 2016, 116(6):061102.
[16] Hawking S W. Gravitational radiation from colliding black holes[J]. Physical Review Letters, 1971, 26:1344-1346.
[17] Hawking S W, Ellis G F R. The large scale structure of space-time[M]. Cambridge:Cambridge University Press, 1973.
[18] Bekenstein J D. Black holes and entropy[J]. Physical Review D, 1973, 7:2333-2346.
[19] Hawking S W. Black hole explosions[J]. Nature, 1974, 248:30-31.
[20] Hawking S W. Particle creation by black holes[J]. Communications in Mathematical Physics, 1975, 43:199-220.
[21] Gibbons G W, Hawking S W. Action integrals and partition functions in quantum gravity[J]. Physical Review D, 1976, 15:2752-2756.
[22] Gibbons G W, Hawking S W. Euclidean quantum gravity[M]. Singapore:World Scientific, 1993.
[23] Hawking S W, Page D N. Thermodynamics of black holes in anti-De Sitter space[J]. Communications in Mathematical Physics, 1983, 87:577.
[24] 蔡荣根, 曹利明. 黑洞的本质[J]. 科学通报, 2016, 61(19):2083-2092. Cai Ronggen, Cao Liming. The nature of black holes[J]. Chinese Science Bulletin, 2016, 61(19):2083-2092.
[25] Page D N. Particle emission rates from a black hole:Massless particles from an uncharged, nonrotating hole[J]. Physical Review D, 1976, 13:198-206.
[26] Page D N. Particle emission rates from a black hole. 2. Massless particles from a rotating hole[J]. Physical Review D, 1976, 14:3260-3273.
[27] Page D N. Particle emission rates from a black hole. 3. Charged leptons from a nonrotating hole[J]. Physical Review D, 1977, 16:2402-2411.
[28] Hawking S W, Perry M J, Strominger A. Soft hair on black holes[J]. Physical Review Letters, 2016, 116(23):231301.
[29] Hartle J B, Hawking S W. Wave function of the universe[J]. Physical Review D, 1983, 28:2960-2975.
[30] Halliwell J J, Hawking S W. The origin of structure in the universe[J]. Physical Review D, 1985, 31:1777.
[31] Carr B J, Hawking S W. Black holes in the early Universe[J]. Monthly Notices of the Royal Astronomical Society, 1974, 168:399-415.
[32] Hawking S W. Wormholes in space-time[J]. Physical Review D, 1988, 37:904-910.
[33] Gibbons G W, Hawking S W, Horowitz G T, et al. Positive mass theorems for black holes[J]. Communications in Mathematical Physics, 1983, 88(3):295-308.
[34] Hawking S W, Hunter C J, Taylor M. Rotation and the AdS/CFT correspondence[J]. Physical Review D, 1999, 59:064005.
[35] Chamblin A, Hawking S W, Reall H S. Brane world black holes[J]. Physical Review D, 2000, 61:065007.
[36] Stephens C R,'t Hooft G, Whiting B F. Black hole evaporation without information loss[J]. Classical and Quantum Gravity, 1994, 11(3):621.
[37] Susskind L. The world as a hologram[J]. Journal of Mathematical Physics, 1995, 36(11):6377-6396.
[38] Maldacena J M. The Large N limit of superconformal field theories and supergravity[J]. Advances in Theoretical and Mathematical Physics, 1998, 2:231-252.
[39] Witten E. Anti-de Sitter space and holography[J]. Advances in Theoretical and Mathematical Physics, 1998, 2:253-291.
[40] LIGO Scientific and Virgo Collaborations. GW151226:Observation of gravitational waves from a 22-solar-mass binary black hole coalescence[J]. Physical Review Letter, 2016, 116(24):241103.
[41] LIGO Scientific and Virgo Collaborations. GW170104:Observation of a 50-Solar-mass binary black hole coalescence at redshift 0.2[J]. Physical Review Letter, 2017, 118(22):221101.
[42] LIGO Scientific and Virgo Collaborations. GW170814:A three-detector observation of gravitational waves from a binary black hole coalescence[J]. Physical Review Letter, 2017, 119(14):141101.
[43] LIGO scientific and Virgo collaborations. GW170817:Observation of gravitational waves from a binary neutron star inspiral[J]. Physical Review Letter, 2017, 119(16):161101.
[44] Hawking S W, Israel W. General relativity:An Einstein centenary survey[M]. Cambridge:Cambridge University Press, 1979:98.
[45] 蔡荣根, 曹周键, 韩文标. 并和双星系统的引力波理论模型[J]. 科学通报, 2016, 61(14):1525-1535. Cai Ronggen, Cao Zhoujian, Han Wenbiao. The gravitational wave models for binary compact objects[J]. Chinese Science Bulletin, 2016, 61(14):1525-1535.
文章导航

/