专题论文

植物分枝的奥秘——植物分枝激素独脚金内酯的感知机制

  • 姚瑞枫 ,
  • 娄智勇 ,
  • 谢道昕
展开
  • 1. 清华大学生命科学学院, 北京 100084;
    2. 清华大学医学院, 北京 100084
姚瑞枫,博士后,研究方向为植物激素作用机理,电子信箱:ruifeng@tsinghua.edu.cn

收稿日期: 2017-10-08

  修回日期: 2018-03-11

  网络出版日期: 2018-04-27

基金资助

国家重点研发计划项目(2016YFA0500501);国家自然科学基金创新研究群体项目(31421001)

The perception mechanism of the plant branching hormone strigolactone

  • YAO Ruifeng ,
  • LOU Zhiyong ,
  • XIE Daoxin
Expand
  • 1. School of Life Sciences, Tsinghua University, Beijing 100084, China;
    2. School of Medicine, Tsinghua University, Beijing 100084, China

Received date: 2017-10-08

  Revised date: 2018-03-11

  Online published: 2018-04-27

摘要

植物激素调控植物的繁衍生息,与人类生存环境和农业生产密切相关;阐明植物激素被其受体感知的机制,对于揭示植物生命活动的本质具有重要意义。植物的分枝主要受到独脚金内酯等重要植物激素的精准调控。简要综述了植物激素独脚金内酯的作用机理,特别是该激素被其受体感知的机制方面近年来取得的重要进展:系统阐明了单子叶模式植物/作物水稻、双子叶模式植物拟南芥以及寄生杂草独脚金中独脚金内酯被其受体感知的机制,为作物株型改良和消除寄生杂草提供了重要理论指导;开创性地揭示了该新型“受体-激素”感知机制不同于生物学领域过去百年建立的配体,可逆地结合受体、并循环触发信号传导链的“配体-受体”识别理论,为创立“受体-配体”不可逆识别的新理论奠定了重要基础。

本文引用格式

姚瑞枫 , 娄智勇 , 谢道昕 . 植物分枝的奥秘——植物分枝激素独脚金内酯的感知机制[J]. 科技导报, 2018 , 36(7) : 20 -25 . DOI: 10.3981/j.issn.1000-7857.2018.07.003

Abstract

Plant hormones regulate every step of the plant life cycle. Elucidating the perception mechanism of plant hormones by their receptors is crucial for understanding plant growth and development, protecting plant and the associated ecosystem, as well as for enhancing food security worldwide. Plant branching is mainly regulated by the branching hormone strigolactone and related phytohormones. The study on the molecular basis of strigolactone action, especially the perception mechanism, has made important breakthrough in recent years:The strigolactone perception mechanisms in the monocot plant rice, the dicot plant Arabidopsis and the parasitic weed Striga have been systematically elucidated, revolutionarily revealing a non-canonical hormone perception mechanism which is different from the reversible "ligand-receptor" perception mode that has been gradually established during the past century. These findings will provide theoretical guidances for breeding crops with ideal architecture as well as for combating the root parasitic weed. In this short review, we will give a brief introduction to the recent advances in strigolactone perception.

参考文献

[1] Domagalska M A, Leyser O. Signal integration in the control of shoot branching[J]. Nature Reviews:Molecular Cell Biology, 2011, 12(4):211-221.
[2] 黎舒佳, 高谨, 李家洋, 等. 独脚金内酯调控水稻分蘖的研究进展[J]. 植物学报, 2015, 50(5):539-548. Li Shujia, Gao Jin, Li Jiayang, et al. Advances in regulating rice tillers by Strigolactones[J]. Chinese Bulletin of Botany, 2015, 50(5):539-548.
[3] Brown R, Johnson A W. The stimulant involved in the germination of Striga hermonthica[J]. Proceedings of the Royal Society of London. Series B, Biological sciences, 1949, 136(882):1-12.
[4] Brown R, Greenwood A D, Johnson A W, et al. The stimulant involved in the germination of Orobanche minor Sm. I. Assay technique and bulk preparation of the stimulant[J]. Biochemical Journal, 1951, 48(5):559-564.
[5] Brown R, Greenwood A D, Johnson A W, et al. The stimulant involved in the germination of Orobanche minor Sm. 2. Chromatographic purification of crude concentrates[J]. Biochemical Journal, 1951, 48(5):564-568.
[6] Brown R, Greenwood A D, Johnson A W, et al. The Orobanche germination factor. Ⅲ. concentration of the factor by counter current distribution[J]. Biochemical Journal, 1952, 52(4):571-574.
[7] Brown R, Johnson A W, Robinson E, et al. The Striga germination factor. Ⅱ. Chromatographic purification of crude concentrates[J]. Biochemical Journal, 1952, 50(5):596-600.
[8] Cook C E, Whichard L P, Turner B, et al. Germination of Witchweed (Striga lutea Lour.):Isolation and properties of a potent stimulant[J]. Science, 1966, 154(3753):1189-1190.
[9] Cook C E, Whichard L P, Monroe W E, et al. Germination stimulants. Ⅱ. Structure of strigol, a potent seed germination stimulant for witchweed (Striga lutea)[J]. Journal of the American Chemical Society, 1972, 94(17):6198-6199.
[10] Brooks D W, Bevinakatti H S, Powell D R. The absolute structure of (+)-Strigol[J]. Journal of Organic Chemistry, 1985, 50(20):3779-3781.
[11] Zwanenburg B, Pospíšil T, Cavar Zeljkovic S. Strigolactones:New plant hormones in action[J]. Planta, 2016, 243(6):1311-1326.
[12] Conn C E, Bythell-Douglas R, Neumann D, et al. Convergent evolution of strigolactone perception enabled host detection in parasitic plants[J]. Science, 2015, 349(6247):540-543.
[13] Toh S, Holbrook Smith D, Stogios P J, et al. Structure-function analysis identifies highly sensitive strigolactone receptors in Striga[J]. Science, 2015, 350(6257):203-207.
[14] Tsuchiya Y, Yoshimura M, Sato Y, et al. Probing strigolactone receptors in Striga hermonthica with fluorescence[J]. Science, 2015, 349(6250):864-868.
[15] Leyser O. Strigolactones and shoot branching:A new trick for a young dog[J]. Developmental Cell, 2008, 15(3):337-338.
[16] Parker C. Observations on the current status of Orobanche and Striga problems worldwide[J]. Pest Management Science, 2009, 65(5):453-459.
[17] Scholes J D, Press M C. Striga infestation of cereal crops-an unsolved problem in resource limited agriculture[J]. Current Opinion in Plant Biology, 2008, 11(2):180-186.
[18] Akiyama K, Matsuzaki K, Hayashi H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi[J]. Nature, 2005, 435(7043):824-827.
[19] Parniske M. Arbuscular mycorrhiza:The mother of plant root endosymbioses[J]. Nature Reviews:Microbiology, 2008, 6(10):763-775.
[20] Redecker D, Morton J B, Bruns T D. Ancestral lineages of arbuscular mycorrhizal fungi (Glomales)[J]. Molecular Phylogenetics and Evolution, 2000, 14(2):276-284.
[21] Gomez Roldan V, Fermas S, Brewer P B, et al. Strigolactone inhibition of shoot branching[J]. Nature, 2008, 455(7210):189-194.
[22] Umehara M, Hanada A, Yoshida S, et al. Inhibition of shoot branching by new terpenoid plant hormones[J]. Nature, 2008, 455(7210):195-200.
[23] Beveridge C A. Strigolactones[J]. Current Biology, 2014, 24(20):R987-R988.
[24] Waters M T, Gutjahr C, Bennett T, et al. Strigolactone signaling and evolution[J]. Annual Review of Plant Biology, 2017, 68(1):291-322.
[25] Lumba S, Holbrook Smith D, McCourt P. The perception of strigolactones in vascular plants[J]. Nature Chemical Biology, 2017, 13(6):599-606.
[26] Hamiaux C, Drummond R S, Janssen B J, et al. DAD2 is an alpha/beta hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone[J]. Current Biology, 2012, 22(21):2032-2036.
[27] Jiang L, Liu X, Xiong G, et al. DWARF 53 acts as a repressor of strigolactone signalling in rice[J]. Nature, 2013, 504(7480):401-405.
[28] Zhou F, Lin Q, Zhu L, et al. D14-SCF(D3)-dependent degradation of D53 regulates strigolactone signalling[J]. Nature, 2013, 504(7480):406-410.
[29] Soundappan I, Bennett T, Morffy N, et al. SMAX1-LIKE/D53 family members enable distinct MAX2-dependent responses to Strigolactones and Karrikins in Arabidopsis[J]. The Plant Cell, 2015, 27(11):3143-3159.
[30] Wang L, Wang B, Jiang L, et al. Strigolactone signaling in Arabidopsis regulates shoot development by targeting D53-Like SMXL repressor proteins for ubiquitination and degradation[J]. The Plant Cell, 2015, 27(11):3128-3142.
[31] Liang Y, Ward S, Li P, et al. SMAX1-LIKE7 signals from the nucleus to regulate shoot development in Arabidopsis via partially EAR motif-independent mechanisms[J]. The Plant Cell, 2016, 28(7):1581-1601.
[32] Snowden K C, Janssen B J. Structural biology:Signal locked in[J]. Nature, 2016, 536(7617):402-404.
[33] Yao R, Ming Z, Yan L, et al. DWARF14 is a non-canonical hormone receptor for strigolactone[J]. Nature, 2016, 536(7617):469-473.
[34] Li J, Li C, Smith S M. Hormone metabolism and signaling in plants[M]. London:Academic Press, 2017.
[35] VanHook A. A lock that cuts its own key[J]. Science Signaling, 2016, 9(443):ec196.
[36] Wang L, Smith S M. Strigolactones redefine plant hormones[J]. Science China Life Sciences, 2016, 59(10):1083-1085.
[37] Fang X, Chen X Y. Branching out[J]. Science China Life Sciences, 2017, 60(1):108-110.
[38] 常金科, 黎家. 独脚金内酯信号感知揭示配体-受体作用新机制[J]. 植物学报, 2017, 52(2):123-127. Chang Jinke, Li Jia. Plants use an atypical strategy to perceive Strigolactones[J]. Chinese Bulletin of Botany, 2017, 52(2):123-127.
[39] Mc Court P. F1000Prime Recommendation of (Yao R, Ming Z, Yan L, et al. Nature, 2016, 536(7617):469-473)[EB/OL]. (2017-06-14)[2017-10-01]. https://f1000.com/prime/726596-126.
[40] Adler E. 2016:Signaling breakthroughs of the year[J]. Science Signaling, 2017, 10(460):eaam5681.
[41] Yao R, Wang L, Li Y, et al. Rice DWARF14 acts as an unconventional hormone receptor to restore strigolactone signaling in Arabidopsis d14 mutant[J]. Journal of Experimental Botany, 2018:JEXBOT/2017/209627.
[42] Yao R, Wang F, Ming Z, et al. ShHTL7 is a non-canonical receptor for strigolactones in root parasitic weeds[J]. Cell Research, 2017, 27(6):838-841.
[43] Xiang H, Yao R, Quan T, et al. Simple beta-lactones are potent irreversible antagonists for strigolactone receptors[J]. Cell Research, 2017, 27(12):1525-1528.
文章导航

/