[1] Domagalska M A, Leyser O. Signal integration in the control of shoot branching[J]. Nature Reviews:Molecular Cell Biology, 2011, 12(4):211-221.
[2] 黎舒佳, 高谨, 李家洋, 等. 独脚金内酯调控水稻分蘖的研究进展[J]. 植物学报, 2015, 50(5):539-548. Li Shujia, Gao Jin, Li Jiayang, et al. Advances in regulating rice tillers by Strigolactones[J]. Chinese Bulletin of Botany, 2015, 50(5):539-548.
[3] Brown R, Johnson A W. The stimulant involved in the germination of Striga hermonthica[J]. Proceedings of the Royal Society of London. Series B, Biological sciences, 1949, 136(882):1-12.
[4] Brown R, Greenwood A D, Johnson A W, et al. The stimulant involved in the germination of Orobanche minor Sm. I. Assay technique and bulk preparation of the stimulant[J]. Biochemical Journal, 1951, 48(5):559-564.
[5] Brown R, Greenwood A D, Johnson A W, et al. The stimulant involved in the germination of Orobanche minor Sm. 2. Chromatographic purification of crude concentrates[J]. Biochemical Journal, 1951, 48(5):564-568.
[6] Brown R, Greenwood A D, Johnson A W, et al. The Orobanche germination factor. Ⅲ. concentration of the factor by counter current distribution[J]. Biochemical Journal, 1952, 52(4):571-574.
[7] Brown R, Johnson A W, Robinson E, et al. The Striga germination factor. Ⅱ. Chromatographic purification of crude concentrates[J]. Biochemical Journal, 1952, 50(5):596-600.
[8] Cook C E, Whichard L P, Turner B, et al. Germination of Witchweed (Striga lutea Lour.):Isolation and properties of a potent stimulant[J]. Science, 1966, 154(3753):1189-1190.
[9] Cook C E, Whichard L P, Monroe W E, et al. Germination stimulants. Ⅱ. Structure of strigol, a potent seed germination stimulant for witchweed (Striga lutea)[J]. Journal of the American Chemical Society, 1972, 94(17):6198-6199.
[10] Brooks D W, Bevinakatti H S, Powell D R. The absolute structure of (+)-Strigol[J]. Journal of Organic Chemistry, 1985, 50(20):3779-3781.
[11] Zwanenburg B, Pospíšil T, Cavar Zeljkovic S. Strigolactones:New plant hormones in action[J]. Planta, 2016, 243(6):1311-1326.
[12] Conn C E, Bythell-Douglas R, Neumann D, et al. Convergent evolution of strigolactone perception enabled host detection in parasitic plants[J]. Science, 2015, 349(6247):540-543.
[13] Toh S, Holbrook Smith D, Stogios P J, et al. Structure-function analysis identifies highly sensitive strigolactone receptors in Striga[J]. Science, 2015, 350(6257):203-207.
[14] Tsuchiya Y, Yoshimura M, Sato Y, et al. Probing strigolactone receptors in Striga hermonthica with fluorescence[J]. Science, 2015, 349(6250):864-868.
[15] Leyser O. Strigolactones and shoot branching:A new trick for a young dog[J]. Developmental Cell, 2008, 15(3):337-338.
[16] Parker C. Observations on the current status of Orobanche and Striga problems worldwide[J]. Pest Management Science, 2009, 65(5):453-459.
[17] Scholes J D, Press M C. Striga infestation of cereal crops-an unsolved problem in resource limited agriculture[J]. Current Opinion in Plant Biology, 2008, 11(2):180-186.
[18] Akiyama K, Matsuzaki K, Hayashi H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi[J]. Nature, 2005, 435(7043):824-827.
[19] Parniske M. Arbuscular mycorrhiza:The mother of plant root endosymbioses[J]. Nature Reviews:Microbiology, 2008, 6(10):763-775.
[20] Redecker D, Morton J B, Bruns T D. Ancestral lineages of arbuscular mycorrhizal fungi (Glomales)[J]. Molecular Phylogenetics and Evolution, 2000, 14(2):276-284.
[21] Gomez Roldan V, Fermas S, Brewer P B, et al. Strigolactone inhibition of shoot branching[J]. Nature, 2008, 455(7210):189-194.
[22] Umehara M, Hanada A, Yoshida S, et al. Inhibition of shoot branching by new terpenoid plant hormones[J]. Nature, 2008, 455(7210):195-200.
[23] Beveridge C A. Strigolactones[J]. Current Biology, 2014, 24(20):R987-R988.
[24] Waters M T, Gutjahr C, Bennett T, et al. Strigolactone signaling and evolution[J]. Annual Review of Plant Biology, 2017, 68(1):291-322.
[25] Lumba S, Holbrook Smith D, McCourt P. The perception of strigolactones in vascular plants[J]. Nature Chemical Biology, 2017, 13(6):599-606.
[26] Hamiaux C, Drummond R S, Janssen B J, et al. DAD2 is an alpha/beta hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone[J]. Current Biology, 2012, 22(21):2032-2036.
[27] Jiang L, Liu X, Xiong G, et al. DWARF 53 acts as a repressor of strigolactone signalling in rice[J]. Nature, 2013, 504(7480):401-405.
[28] Zhou F, Lin Q, Zhu L, et al. D14-SCF(D3)-dependent degradation of D53 regulates strigolactone signalling[J]. Nature, 2013, 504(7480):406-410.
[29] Soundappan I, Bennett T, Morffy N, et al. SMAX1-LIKE/D53 family members enable distinct MAX2-dependent responses to Strigolactones and Karrikins in Arabidopsis[J]. The Plant Cell, 2015, 27(11):3143-3159.
[30] Wang L, Wang B, Jiang L, et al. Strigolactone signaling in Arabidopsis regulates shoot development by targeting D53-Like SMXL repressor proteins for ubiquitination and degradation[J]. The Plant Cell, 2015, 27(11):3128-3142.
[31] Liang Y, Ward S, Li P, et al. SMAX1-LIKE7 signals from the nucleus to regulate shoot development in Arabidopsis via partially EAR motif-independent mechanisms[J]. The Plant Cell, 2016, 28(7):1581-1601.
[32] Snowden K C, Janssen B J. Structural biology:Signal locked in[J]. Nature, 2016, 536(7617):402-404.
[33] Yao R, Ming Z, Yan L, et al. DWARF14 is a non-canonical hormone receptor for strigolactone[J]. Nature, 2016, 536(7617):469-473.
[34] Li J, Li C, Smith S M. Hormone metabolism and signaling in plants[M]. London:Academic Press, 2017.
[35] VanHook A. A lock that cuts its own key[J]. Science Signaling, 2016, 9(443):ec196.
[36] Wang L, Smith S M. Strigolactones redefine plant hormones[J]. Science China Life Sciences, 2016, 59(10):1083-1085.
[37] Fang X, Chen X Y. Branching out[J]. Science China Life Sciences, 2017, 60(1):108-110.
[38] 常金科, 黎家. 独脚金内酯信号感知揭示配体-受体作用新机制[J]. 植物学报, 2017, 52(2):123-127. Chang Jinke, Li Jia. Plants use an atypical strategy to perceive Strigolactones[J]. Chinese Bulletin of Botany, 2017, 52(2):123-127.
[39] Mc Court P. F1000Prime Recommendation of (Yao R, Ming Z, Yan L, et al. Nature, 2016, 536(7617):469-473)[EB/OL]. (2017-06-14)[2017-10-01]. https://f1000.com/prime/726596-126.
[40] Adler E. 2016:Signaling breakthroughs of the year[J]. Science Signaling, 2017, 10(460):eaam5681.
[41] Yao R, Wang L, Li Y, et al. Rice DWARF14 acts as an unconventional hormone receptor to restore strigolactone signaling in Arabidopsis d14 mutant[J]. Journal of Experimental Botany, 2018:JEXBOT/2017/209627.
[42] Yao R, Wang F, Ming Z, et al. ShHTL7 is a non-canonical receptor for strigolactones in root parasitic weeds[J]. Cell Research, 2017, 27(6):838-841.
[43] Xiang H, Yao R, Quan T, et al. Simple beta-lactones are potent irreversible antagonists for strigolactone receptors[J]. Cell Research, 2017, 27(12):1525-1528.