专题论文

基于胆固醇代谢调控的肿瘤免疫治疗新方法

  • 白轶冰 ,
  • 许琛琦
展开
  • 1. 中国科学院生物化学与细胞生物学研究所, 上海 200031;
    2. 上海科技大学生命科学与技术学院, 上海 201210
白轶冰,博士研究生,研究方向为T细胞抗肿瘤免疫及胆固醇代谢,电子信箱:ybbai@sibcb.ac.cn

收稿日期: 2018-03-10

  修回日期: 2018-03-29

  网络出版日期: 2018-04-27

基金资助

国家自然科学基金项目(31425009,31621003)

A new cancer immunotherapy based on cholesterol metabolism modulation

  • BAI Yibing ,
  • XU Chenqi
Expand
  • 1. Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China;
    2. School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China

Received date: 2018-03-10

  Revised date: 2018-03-29

  Online published: 2018-04-27

摘要

免疫检测点阻断疗法等肿瘤免疫疗法近年在临床上取得了重大突破,但仍存在响应率低等显著缺点,需开发新的肿瘤免疫疗法以使更多肿瘤患者受益。胆固醇作为细胞质膜脂质的重要组成成分,其代谢可以影响T细胞的质膜环境及效应功能。本研究发现,通过调控胆固醇代谢可以增强CD8+ T细胞的抗肿瘤免疫反应。抑制关键胆固醇酯化酶ACAT1的活性,CD8+ T细胞质膜游离胆固醇水平上调,细胞的抗肿瘤免疫应答显著增强,这为肿瘤免疫治疗提供了新思路和新方法。

本文引用格式

白轶冰 , 许琛琦 . 基于胆固醇代谢调控的肿瘤免疫治疗新方法[J]. 科技导报, 2018 , 36(7) : 33 -36 . DOI: 10.3981/j.issn.1000-7857.2018.07.005

Abstract

Immune checkpoint blockade and other cancer immunotherapies have achieved great success in clinic but problems such as low response rate still remain. Cholesterol is a key component of cell membrane, whose cellular metabolism can influence the plasma membrane environment and effector function of T cells. We have found that the anti-tumor immune response of CD8+ T cells can be potentiated by modulating cellular cholesterol metabolism. Inhibiting the activity of ACAT1, a key cholesterol esterification enzyme, can upregulate the cholesterol level on CD8+ T cell plasma membrane, and significantly enhance the anti-tumor effector function. This finding provides a new method for cancer immunotherapy.

参考文献

[1] US Food and Drug Administration. FDA grants accelerated approval to pembrolizumab for first tissue/site agnostic indication[EB/OL]. (2017-05-30)[2018-01-10]. https://www.fda.gov/drugs/informationondrugs/approveddrugs/ucm560040.htm.
[2] Vanpouillebox C, Lhuillier C, Bezu L, et al. Trial watch:Immune checkpoint blockers for cancer therapy[J]. Oncoimmunology, 2017, 6(11):e1373237.
[3] Zitvogel L, Tesniere A, Kroemer G. Cancer despite immunosurveillance:Immunoselection and immunosubversion[J]. Nature Reviews Immunology, 2006, 6(10):715-727.
[4] Mouritsen O G, Zuckermann M J. What's so special about cholesterol[J]. Lipids, 2004, 39(11):1101-1113.
[5] Roduit C, Goot F G V D, Rios P D L, et al. Elastic membrane heterogeneity of living cells revealed by stiff nanoscale membrane domains[J]. Biophysical Journal, 2008, 94(4):1521-1532.
[6] Fooksman D R, Vardhana S, Vasilivershamis G, et al. Functional anatomy of T cell activation and synapse formation[J]. Annual Review of Immunology, 2010, 28(1):79-105.
[7] Jenkins M R, Griffiths G M. The synapse and cytolytic machinery of cytotoxic T cells[J]. Current Opinion in Immunology, 2010, 22(3):308-313.
[8] Kaizuka Y, Douglass A D, Varma R, et al. Mechanisms for segregating T cell receptor and adhesion molecules during immunological synapse formation in Jurkat T cells[J]. PNAS, 2007, 104(51):20296-202301.
[9] Brown M S, Goldstein J L. A receptor-mediated pathway for cholesterol homeostasis[J]. Science, 1986, 25(7):583-602.
[10] Goldstein J L, Deboseboyd R A, Brown M S. Protein sensors for membrane sterols[J]. Cell, 2006, 124(1):35-46.
[11] Tabas I. Consequences of cellular cholesterol accumulation:Basic concepts and physiological implications[J]. Journal of Clinical Investigation, 2002, 110(7):905-911.
[12] Yang W, Bai Y, Xiong Y, et al. Potentiating the antitumour response of CD8+ T cells by modulating cholesterol metabolism[J]. Nature, 2016, 531(7596):651-655.
[13] Chang T Y, Chang C C Y, Ohgami N, et al. Cholesterol sensing, trafficking, and esterification[J]. Annual Review of Cell & Developmental Biology, 2006, 22(1):129-157.
[14] Libby P, Aikawa M. Stabilization of atherosclerotic plaques:New mechanisms and clinical targets[J]. Nature Medicine, 2002, 8(11):1257-1262.
[15] Pal P, Gandhi H, Giridhar R, et al. ACAT inhibitors:The search for novel cholesterol lowering agents[J]. Mini Reviews in Medicinal Chemistry, 2013, 13(8):1195-1219.
文章导航

/