专题论文

利用内源性干细胞原位再生晶状体治疗婴幼儿白内障

  • 刘奕志
展开
  • 中山大学中山眼科中心, 广州 510060
刘奕志,教授,研究方向为眼组织再生和重大致盲眼病防治,电子信箱:yzliu62@yahoo.com

收稿日期: 2018-02-15

  修回日期: 2018-03-23

  网络出版日期: 2018-04-27

基金资助

国家重大科技计划(973计划)项目(2015CB964600);国家自然科学基金国际(地区)合作与交流项目(81320108008)

Pediatric cataract therapy with endogenous stem cells-mediated lens regeneration

  • LIU Yizhi
Expand
  • Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China

Received date: 2018-02-15

  Revised date: 2018-03-23

  Online published: 2018-04-27

摘要

利用内源性干细胞进行组织器官的修复和再生是再生医学研究的最终目标。婴幼儿白内障是幼儿致盲性眼病的首要病因,目前尚无有效治疗手段。本研究组从哺乳动物内成功分离并获得了晶状体上皮干细胞,证明Pax6和Bmi1是维持其分化和自我更新的关键因子,并以保留内源性干细胞为目标,设计了全新的白内障术式。相较于传统术式,新术式最大程度地保留了内源性干细胞、基底膜和微环境,在新西兰兔、食蟹猴和先天性白内障患儿内实现了功能性晶状体的再生。研究结果为白内障提供了全新的治疗策略并为组织再生及内源性干细胞的应用提供了全新的范例。

本文引用格式

刘奕志 . 利用内源性干细胞原位再生晶状体治疗婴幼儿白内障[J]. 科技导报, 2018 , 36(7) : 37 -42 . DOI: 10.3981/j.issn.1000-7857.2018.07.006

Abstract

Repair and regeneration of tissues using endogenous stem cells represent an ultimate goal in regenerative medicine. To our knowledge, human lens regeneration has not yet been demonstrated. Currently, the only treatment for cataracts, the leading cause of blindness worldwide, is to extract the cataractous lens and implant an artificial intraocular lens. However, this procedure may pose notable risks of complications. In this paper we isolate lens epithelial stem/progenitor cells (LECs) in mammals and show that Pax6 and Bmi1 are required for LEC renewal. We design a surgical method for removal of cataract that preserves endogenous LECs and achieves functional regeneration of lens in rabbits and macaques, as well as in human infants with cataracts. Our method differs conceptually from the current practice, preserves endogenous LECs and their natural environment maximally, and regenerates lenses with visual function. Our approach demonstrates a novel treatment strategy for cataracts and provides a new paradigm for tissue regeneration using endogenous stem cells.

参考文献

[1] Stevens G A, White R A, Flaxman S R, et al. Global prevalence of vision impairment and blindness:Magnitude and temporal trends, 1990-2010[J]. Ophthalmology, 2013, 120(12):2377-2384.
[2] Visser N, Bauer N J, Nuijts R M. Toric intraocular lenses:Historical overview, patient selection, IOL calculation, surgical techniques, clinical outcomes, and complications[J]. Journal of Cataract & Refract Surgery, 2013, 39(4):624-637.
[3] Mamalis N, Davis B, Nilson C D, et al. Complications of foldable intraocular lenses requiring explantation or secondary intervention:2003 survey update[J]. Journal of Cataract & Refract Surgery, 2004, 30(10):2209-2218.
[4] Bothun E D, Cleveland J, Lynn M J, et al. One-year strabismus outcomes in the Infant Aphakia Treatment Study[J]. Ophthalmology, 2013, 120(6):1227-1231.
[5] Infant Aphakia Treatment Study Group, Lambert S R, Buckley E G, et al. A randomized clinical trial comparing contact lens with intraocular lens correction of monocular aphakia during infancy:Grating acuity and adverse events at age 1 year[J]. Archives of Ophthalmology, 2010, 128(7):810-818.
[6] Barde Y. Caution urged in trial of stem cells to treat spinalcord injury[J]. Nature, 2009, 458(7234):29.
[7] Zarzeczny A, Caulfield T. Emerging ethical, legal and social issues associated with stem cell research & and the current role of the moral status of the embryo[J]. Stem Cell Reviews and Reports, 2009, 5(2):96-101.
[8] Ohnishi K, Semi K, Yamamoto T, et al. Premature termination of reprogramming in vivo leads to cancer development through altered epigenetic regulation[J]. Cell, 2014, 156(4):663-677.
[9] Gore A, Li Z, Fung H L, et al. Somatic coding mutations in human induced pluripotent stem cells[J]. Nature, 2011, 471(7336):63-67.
[10] Lister R, Pelizzola M, Kida Y S, et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells[J]. Nature, 2011, 471(7336):68-73.
[11] Kim K, Doi A, Wen B, et al. Epigenetic memory in induced pluripotent stem cells[J]. Nature, 2010, 467(7313):285-290.
[12] Hyun I, Hochedlinger K, Jaenisch R, et al. New advances in iPS cell research do not obviate the need for human embryonic stem cells[J]. Cell Stem Cell, 2007, 1(4):367-368.
[13] Shimazaki J, Shimmura S, Tsubota K. Donor source affects the outcome of ocular surface reconstruction in chemical or thermal burns of the cornea[J]. Ophthalmology, 2004, 111(1):38-44.
[14] Moore K A, Lemischka I R. Stem cells and their niches[J]. Science, 2006, 311(5769):1880-1885.
[15] Blanpain C, Lowry W E, Geoghegan A, et al. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche[J]. Cell, 2004, 118(5):635-648.
[16] Kalluri R, Weinberg R A. The basics of epithelial-mesenchymal transition[J]. The Journal of Clinical Investigation, 2009, 119(6):1420-1428.
[17] Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors:Stem cells and their niche[J]. Cell, 2004, 116(6):769-778.
[18] Purnell B A, Hines P J. Steps to the clinic[J]. Science, 2009, 324(5935):1661.
[19] Blanpain C, Horsley V, Fuchs E. Epithelial stem cells:Turning over new leaves[J]. Cell, 2007, 128(3):445-458.
[20] Miller F D, Kaplan D R. Mobilizing endogenous stem cells for repair and regeneration:Are we there yet[J]. Cell Stem Cell, 2012, 10(6):650-652.
[21] Sato T, Van Es J H, Snippert H J, et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts[J]. Nature, 2011, 469(7330):415-418.
[22] Sanberg P R, Eve D J, Metcalf C, et al. Advantages and challenges of alternative sources of adult-derived stem cells for brain repair in stroke[J]. Progress in Brain Research, 2012, 201:99-117.
[23] Huang S X, Islam M N, O'Neill J, et al. Efficient generation of lung and airway epithelial cells from human pluripotent stem cells[J]. Nature Biotechnology, 2014, 32(1):84-91.
[24] Beebe D C, Holekamp N M, Shui Y B. Oxidative damage and the prevention of age-related cataracts[J]. Ophthalmic Research, 2010, 44(3):155-165.
[25] Lin H T, Ouyang H, Zhu Jie, et al. Lens regeneration using endogenous stem cells with gain of visual function[J]. Nature, 2016, 531(7594):323-328
[26] Park I K, Qian D, Kiel M, et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells[J]. Nature, 2003, 423(6937):302-305.
[27] Lessard J, Sauvageau G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells[J]. Nature, 2003, 423(6937):255-260.
[28] Molofsky A V, Pardal R, Iwashita T, et al. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation[J]. Nature, 2003, 425(6961):962-967.
[29] Sugiyama Y, Lovicu F J, McAvoy J W. Planar cell polarity in the mammalian eye lens[J]. Organogenesis, 2011, 7(3):191-201.
[30] Gwon A. Lens regeneration in mammals:A review[J]. Survey of Ophthalmology, 2006, 51(1):51-62.
[31] Gwon A E, Gruber L J, Mundwiler K E. A histologic study of lens regeneration in aphakic rabbits[J]. Investigative Ophthalmology & Visual Science, 1990, 31(3):540-547.
文章导航

/