[1] Eisenberg L. Child psychiatry. Mental deficiency[J]. American Journal of Psychiatry, 1949, 120(114):526-528.
[2] Caronna E B, Milunsky J M, Tagerflusberg H. Autism spectrum disorders:Clinical and research frontiers[J]. Archives of Disease in Childhood, 2008, 93(6):518-523.
[3] Rapin I, Tuchman R F. Autism:Definition, neurobiology, screening, diagnosis[J]. Pediatric Clinics of North America, 2008, 55(5):1129-1146.
[4] Noens I, Van B I, Verpoorten R, et al. The ComFor:An instrument for the indication of augmentative communication in people with autism and intellectual disability[J]. Journal of Intellectual Disability Research, 2006, 50(9):621-632.
[5] Lam K S L, Aman M G. The repetitive behavior scale-revised:Independent validation in individuals with autism spectrum disorders[J]. Journal of Autism & Developmental Disorders, 2007, 37(5):855-866.
[6] Delorme R, Ey E, Toro R, et al. Progress toward treatments for synaptic defects in autism[J]. Nature Medicine, 2013, 19(6):685-694.
[7] Azevedo F, Carvalho L L, Farfel J, et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain[J]. Journal of Comparative Neurology, 2009, 513(5):532-541.
[8] Herculano-Houzel S. The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost[J]. PNAS, 2012, 109(Suppl 1):10661-10668.
[9] Suzana H H. The human brain in numbers:A linearly scaledup primate brain[J]. Frontiers in Human Neuroscience, 2009, 3(31):31.
[10] Gray E G. Axo-somatic and axo-dendritic synapses of the cerebral cortex:An electron microscope study[J]. Journal of Anatomy, 1959, 93(4):420-433.
[11] Chang H T. Cortical neurons with particular reference to the apical dendrites[J]. Cold Spring Harbor Symposia on Quantitative Biology, 1952, 17(7):189-202.
[12] Yuste R. Electrical compartmentalization in dendritic spines[J]. Annual Review of Neuroscienc, 2013, 36(1):429-449.
[13] Sheng M, Kim E. The Postsynaptic organization of synapses[J]. Cold Spring Harbor Perspectives in Biology, 2011, 3(12):VⅡ.
[14] Delorme R, Ey E, Toro R, et al. Progress toward treatments for synaptic defects in autism[J]. Nature Medicine, 2013, 19(6):685-694.
[15] Meehan R R, Lewis J D, Mckay S, et al. Identification of a mammalian protein that binds specifically to DNA containing methylated CpGs[J]. Cell, 1989, 58(3):499-507.
[16] Nan X, Campoy F J, Bird A A. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin[J]. Cell, 1997, 88(4):471-481.
[17] Young J I, Hong E P, Castle J C, et al. Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2[J]. PNAS, 2005, 102(49):17551-17558.
[18] Cheng T L, Wang Z, Liao Q, et al. MeCP2 suppresses nuclear microrna processing and dendritic growth by regulating the DGCR8/Drosha complex[J]. Developmental Cell, 2014, 28(5):547-560.
[19] Amir R E, Ib V D V, Wan M, et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpGbinding protein 2[J]. Nature Genetics, 1999, 23(2):185-188.
[20] Ramocki M B, Peters S U, Tavyev Y J, et al. Autism and other neuropsychiatric symptoms are prevalent in individuals with MECP2 duplication syndrome[J]. Annals of Neurology, 2009, 66(6):771-782.
[21] Samaco R C, Mandel-Brehm C, McGraw C M, et al. Crh and Oprm1 mediate anxiety-related behavior and social approach in a mouse model of MECP2 duplication syndrome[J]. Nature Genetics, 2012, 44:206-211.
[22] Collins A L, Levenson J M, Vilaythong A P, et al. Mild overexpression of MeCP2 causes a progressive neurological disorder in mice[J]. Human Molecular Genetics, 2004, 13(21):2679-89.
[23] Nakagawa T, Feliu-Mojer M I, Wulf P, et al. Generation of lentiviral transgenic rats expressing Glutamate Receptor Interacting Protein I (GRIP1) in brain, spinal cord and testis[J]. Journal of Neuroscience Methods, 2006, 152(1/2):1-9.
[24] Janovitz T, Klein I A, Oliveira T, et al. High-throughput sequencing reveals principles of adeno-associated virus serotype 2 integration[J]. Journal of Virology, 2013, 87(15):855-8568.
[25] Cohn L B, Silva I T, Oliveira T Y, et al. HIV-1 integration landscape during latent and active infection[J]. Cell, 2015, 160(3):420-432.
[26] Xiao J, Zhang L, Wang J, et al. Rearrangement structure-independent strategy of CNV breakpoint analysis[J]. Molecular Genetics and Genomics, 2014, 289(5):755-763.
[27] Du R, Lu C, Jiang Z, et al. Efficient typing of copy number variations in a segmental duplication-mediated rearrangement hotspot using multiplex competitive amplification[J]. Journal of Human Genetics, 2012, 57(8):545-551.
[28] Frye R E, Melnyk S, Macfabe D F. Unique acyl-carnitine profiles are potential biomarkers for acquired mitochondrial disease in autism spectrum disorder[J]. Translational Psychiatry, 2013, 3(1):e220.
[29] Harlow H F. The development of learning in the Rhesus monkey[J]. American Scientist, 1959, 47(4):354A-479.
[30] Ha J C, Mandell D J, Gray J. Two-item discrimination and Hamilton search learning in infant pigtailed macaque monkeys[J]. Behavioural Processes, 2011, 86(1):1-6.
[31] Liu Z, Nie Y H, Zhang C C, et al. Generation of macaques with sperm derived from juvenile monkey testicular xenografts[J]. Cell Research, 2015, 26(1):139-142.