专题论文

MeCP2转基因食蟹猴所表征的类自闭症行为及种系传递

  • 仇子龙 ,
  • 李霄
展开
  • 中国科学院脑科学与智能技术卓越创新中心, 中国科学院神经科学研究所;神经科学国家重点实验室, 上海 200031
仇子龙,研究员,研究方向为神经系统疾病,电子信箱:zqiu@ion.ac.cn

收稿日期: 2017-11-30

  修回日期: 2018-03-08

  网络出版日期: 2018-04-27

基金资助

国家重点基础研究发展计划(973计划)项目(XDB02050400);国家自然科学基金项目(91432111,91232712,81527901)

Autistic-like behaviors by MECP2 transgenic monkeys and germline transmission

  • QIU Zilong ,
  • LI Xiao
Expand
  • State Key Laboratory of Neuroscience, Institute of Neuroscience, Chinese Academy of Sciences, CAS Center for Excellence in Brain Science and Intelligence Technology(CEBSIT), Shanghai 200031, China

Received date: 2017-11-30

  Revised date: 2018-03-08

  Online published: 2018-04-27

摘要

自闭症是近年来公众关注度很高的一种神经系统疾病,甲基化CpG结合蛋白2(MeCP2)因其能够在转录水平调节基因表达和操控微小RNA(miRNA)的效应而在自闭症中扮演着重要的角色。当MeCP2因突变而功能缺失时会导致瑞特综合症(Rett syndrome),而当MeCP2拷贝数过多则会导致一种名为MeCP2重复综合症的自闭症。虽然目前科学家已经构建成功了MeCP2的转基因小鼠,但在这种小鼠模型中无法很好地观察到类似人类自闭症的表型。本研究组通过慢病毒侵染的方法构建了能在神经系统中特异表达人源MeCP2的转基因食蟹猴模型,并通过深度测序检测出了转基因插入位点以及通过免疫印迹(westernblot)确证了外源基因的表达。该转基因食蟹猴模型在行动、社交及情绪方面表现出明显的类似自闭症行为,并呈现转基因的种系传递现象。这些结果表明通过基因编辑技术构建非人灵长类模型在脑疾病研究中的重要性。

本文引用格式

仇子龙 , 李霄 . MeCP2转基因食蟹猴所表征的类自闭症行为及种系传递[J]. 科技导报, 2018 , 36(7) : 48 -55 . DOI: 10.3981/j.issn.1000-7857.2018.07.008

Abstract

Autism is a neurological disease with high public concern in recent years. Methyl-CpG binding protein 2(MeCP2) plays an important role in autism for its importance in transcriptional regulation and microRNA processing. Mutations in MeCP2 gene are found in most of patients with Rett syndrome, duplications of MeCP2-containing genomic segments cause the MeCP2 duplication syndrome, which shares core symptoms with autism spectrum disorders. Although MeCP2 transgenic mice has already been reconstructed, it is still difficult to identify autism-like behaviours in the mouse model of MeCP2 overexpression. In this article we report the lentivirus-based transgenic cynomolgus monkeys expressing human MeCP2 in the brain. Genomic integration sites of the transgenes are characterized by a deepsequencing-based method and expression of the MeCP2 transgene is confirmed by Western blotting. This type of transgenic monkeys exhibits autism-like behaviours in action, social and emotional aspects and shows germline transmission of the transgene. These results indicate the feasibility and reliability of using genetically engineered non-human primates to study brain disorders.

参考文献

[1] Eisenberg L. Child psychiatry. Mental deficiency[J]. American Journal of Psychiatry, 1949, 120(114):526-528.
[2] Caronna E B, Milunsky J M, Tagerflusberg H. Autism spectrum disorders:Clinical and research frontiers[J]. Archives of Disease in Childhood, 2008, 93(6):518-523.
[3] Rapin I, Tuchman R F. Autism:Definition, neurobiology, screening, diagnosis[J]. Pediatric Clinics of North America, 2008, 55(5):1129-1146.
[4] Noens I, Van B I, Verpoorten R, et al. The ComFor:An instrument for the indication of augmentative communication in people with autism and intellectual disability[J]. Journal of Intellectual Disability Research, 2006, 50(9):621-632.
[5] Lam K S L, Aman M G. The repetitive behavior scale-revised:Independent validation in individuals with autism spectrum disorders[J]. Journal of Autism & Developmental Disorders, 2007, 37(5):855-866.
[6] Delorme R, Ey E, Toro R, et al. Progress toward treatments for synaptic defects in autism[J]. Nature Medicine, 2013, 19(6):685-694.
[7] Azevedo F, Carvalho L L, Farfel J, et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain[J]. Journal of Comparative Neurology, 2009, 513(5):532-541.
[8] Herculano-Houzel S. The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost[J]. PNAS, 2012, 109(Suppl 1):10661-10668.
[9] Suzana H H. The human brain in numbers:A linearly scaledup primate brain[J]. Frontiers in Human Neuroscience, 2009, 3(31):31.
[10] Gray E G. Axo-somatic and axo-dendritic synapses of the cerebral cortex:An electron microscope study[J]. Journal of Anatomy, 1959, 93(4):420-433.
[11] Chang H T. Cortical neurons with particular reference to the apical dendrites[J]. Cold Spring Harbor Symposia on Quantitative Biology, 1952, 17(7):189-202.
[12] Yuste R. Electrical compartmentalization in dendritic spines[J]. Annual Review of Neuroscienc, 2013, 36(1):429-449.
[13] Sheng M, Kim E. The Postsynaptic organization of synapses[J]. Cold Spring Harbor Perspectives in Biology, 2011, 3(12):VⅡ.
[14] Delorme R, Ey E, Toro R, et al. Progress toward treatments for synaptic defects in autism[J]. Nature Medicine, 2013, 19(6):685-694.
[15] Meehan R R, Lewis J D, Mckay S, et al. Identification of a mammalian protein that binds specifically to DNA containing methylated CpGs[J]. Cell, 1989, 58(3):499-507.
[16] Nan X, Campoy F J, Bird A A. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin[J]. Cell, 1997, 88(4):471-481.
[17] Young J I, Hong E P, Castle J C, et al. Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2[J]. PNAS, 2005, 102(49):17551-17558.
[18] Cheng T L, Wang Z, Liao Q, et al. MeCP2 suppresses nuclear microrna processing and dendritic growth by regulating the DGCR8/Drosha complex[J]. Developmental Cell, 2014, 28(5):547-560.
[19] Amir R E, Ib V D V, Wan M, et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpGbinding protein 2[J]. Nature Genetics, 1999, 23(2):185-188.
[20] Ramocki M B, Peters S U, Tavyev Y J, et al. Autism and other neuropsychiatric symptoms are prevalent in individuals with MECP2 duplication syndrome[J]. Annals of Neurology, 2009, 66(6):771-782.
[21] Samaco R C, Mandel-Brehm C, McGraw C M, et al. Crh and Oprm1 mediate anxiety-related behavior and social approach in a mouse model of MECP2 duplication syndrome[J]. Nature Genetics, 2012, 44:206-211.
[22] Collins A L, Levenson J M, Vilaythong A P, et al. Mild overexpression of MeCP2 causes a progressive neurological disorder in mice[J]. Human Molecular Genetics, 2004, 13(21):2679-89.
[23] Nakagawa T, Feliu-Mojer M I, Wulf P, et al. Generation of lentiviral transgenic rats expressing Glutamate Receptor Interacting Protein I (GRIP1) in brain, spinal cord and testis[J]. Journal of Neuroscience Methods, 2006, 152(1/2):1-9.
[24] Janovitz T, Klein I A, Oliveira T, et al. High-throughput sequencing reveals principles of adeno-associated virus serotype 2 integration[J]. Journal of Virology, 2013, 87(15):855-8568.
[25] Cohn L B, Silva I T, Oliveira T Y, et al. HIV-1 integration landscape during latent and active infection[J]. Cell, 2015, 160(3):420-432.
[26] Xiao J, Zhang L, Wang J, et al. Rearrangement structure-independent strategy of CNV breakpoint analysis[J]. Molecular Genetics and Genomics, 2014, 289(5):755-763.
[27] Du R, Lu C, Jiang Z, et al. Efficient typing of copy number variations in a segmental duplication-mediated rearrangement hotspot using multiplex competitive amplification[J]. Journal of Human Genetics, 2012, 57(8):545-551.
[28] Frye R E, Melnyk S, Macfabe D F. Unique acyl-carnitine profiles are potential biomarkers for acquired mitochondrial disease in autism spectrum disorder[J]. Translational Psychiatry, 2013, 3(1):e220.
[29] Harlow H F. The development of learning in the Rhesus monkey[J]. American Scientist, 1959, 47(4):354A-479.
[30] Ha J C, Mandell D J, Gray J. Two-item discrimination and Hamilton search learning in infant pigtailed macaque monkeys[J]. Behavioural Processes, 2011, 86(1):1-6.
[31] Liu Z, Nie Y H, Zhang C C, et al. Generation of macaques with sperm derived from juvenile monkey testicular xenografts[J]. Cell Research, 2015, 26(1):139-142.
文章导航

/