专题论文

参照零模型的符号社交网络理论研究

  • 许小可 ,
  • 耿雪娜 ,
  • 王雪
展开
  • 1. 大连民族大学信息与通信工程学院, 大连 116600;
    2. 贵州省公共大数据重点实验室(贵州大学), 贵阳 550025;
    3. 大连民族大学图书馆, 大连 116600
许小可,教授,研究方向为非线性时间序列分析和复杂网络,电子信箱:xuxiaoke@foxmail.com

收稿日期: 2017-10-30

  修回日期: 2018-03-29

  网络出版日期: 2018-04-27

基金资助

国家自然科学基金项目(61773091,61603073,61374170);大连市青年科技之星项目支持计划(2015R091);贵州省公共大数据重点实验室开放课题(2017BDKFJJ001)

Theoretical studies of signed social networks based on null models

  • XU Xiaoke ,
  • GENG Xuena ,
  • WANG Xue
Expand
  • 1. College of Information and Communication Engineering, Dalian Minzu University, Dalian 116600, China;
    2. Guizhou Provincial Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, China;
    3. Library of Dalian Minzu University, Dalian 116600, China

Received date: 2017-10-30

  Revised date: 2018-03-29

  Online published: 2018-04-27

摘要

结构平衡理论和地位理论是社交网络领域的重要理论,可以用来分析同时具有正向和负向连边的社交符号网络。提出了3种新的随机断边重连零模型,基于随机断边重连和符号随机置乱两大类零模型,对符号社交网络的地位理论和结构平衡理论进行了系统研究。发现基于零模型不但可以验证两种理论在实证网络中的准确性,还能揭示正边、负边拓扑结构和连边符号相关性对于整个网络性质的影响。提出了一个新框架,研究能否将有向符号网络转化为无向符号网络,发现目前常用的将有向符号网络转化成无向符号网络的方法在有些情况下对于研究社交网络理论是不合适的,存在着信息损失;讨论了非符号有向网络中的势能理论。

本文引用格式

许小可 , 耿雪娜 , 王雪 . 参照零模型的符号社交网络理论研究[J]. 科技导报, 2018 , 36(8) : 22 -30 . DOI: 10.3981/j.issn.1000-7857.2018.08.002

Abstract

The structural balance and the status are important issues in social network fields, which can be used to analyze signed social networks with a mixture of positive and negative interactions. In this study firstly three novel random link-mixing null models are proposed. Then the status and structural balance theories of signed social networks are studied based on the random link-mixing null models as well as the random sign-mixing null models. It is shown that, based on null models, not only the accuracy obtained based on both theories can be verified in the study of empirical networks, but also the impacts of the positive and negative edge topologies and the edge signed correlation on the whole network properties can be revealed. Finally, a new framework is proposed to study whether the directed signed networks can be transformed into the undirected signed networks. It is confirmed that the common methods for transforming the directed signed networks into the undirected signed networks are not suitable for studying social network theories, and the potential theory in unsigned directed networks is also studied.

参考文献

[1] 程苏琦, 沈华伟, 张国清, 等. 符号网络研究综述[J]. 软件学报, 2014, 25(1):1-15. Cheng Suqi, Shen Huawei, Zhang Guoqing, et al. Survey of signed network research[J]. Journal of Software, 2014, 25(1):1-15
[2] Guha R, Kumar R, Raghavan P, et al. Propagation of trust and distrust[C]//Proceedings of Thirteenth International Conference on World Wide Web (WWW2004). New York, USA:ACM Press, 2004:403-412.
[3] Kunegis J, Lommatzsch A, Bauckhage C. The slashdot zoo (mining a social network with negative edges)[C]//Proceedings of Eighteenth International Conference on World Wide Web (WWW2009). Madrid, Spain:ACM Press, 2009:741-750.
[4] 伍杰华. 异构符号网络中正负社交关系的分类预测研究[J]. 情报科学, 2016, 34(1):81-86. Wu Jiehua. Positive and negative social relation classification prediction in heterogeneous signed network[J]. Information Science, 2016, 34(1):81-86.
[5] 胡心专, 郭景峰, 贺释千, 等一种节点相似度和参与度符号网络社区发现算法[J]. 小型微型计算机系统, 2017, 38(10):2275-2280. Hu Xinzhuan, Guo Jingfeng, He Shiqian, et al. Community detection algorithm of node similarity and node participation degree in signed networks[J]. Journal of Chinese Computer Systems, 2017, 38(10):2275-2280.
[6] Heider F. Attitudes and cognitive organization[J]. The Journal of Psychology, 1946, 21(1):107-112.
[7] Leskovec J, Huttenlocher D, Kleinberg J. Signed networks in social media[J]. Human Factors in Computing Systems, 2010:1361-1370.
[8] Davis J A. Clustering and structural balance in graphs[J]. Human Relations, 1967, 20(2):181-187.
[9] Milo R, Itzkovitz S, Kashtan N, et al. Superfamilies of evolved and designed networks[J]. Science, 2004, 303(5663):1538-1542.
[10] Foeter J G, Foster D V, Grassberger P, et al. Edge direction and the structure of networks[J]. Proceedings of the National Academy of Sciences, 2010, 107(24):10815-10820.
[11] Costa L F, Rodrigues F A, Travieso G, et al. Characterization of complex networks:A survey of measurements[J]. Advances in Physics, 2010, 56(1):167-242.
[12] Newman M. The physics of networks[J]. Physics Today, 2008, 61(11):33-38.
[13] Amarll A N, Guimera R. Complex networks:Lies, damned lies and statistics[J]. Nature Physics, 2006, 2(2):75-76.
[14] 陈泉, 杨建梅, 曾进群. 零模型及其在复杂网络研究中的应用[J]. 复杂系统与复杂性科学, 2013(1):8-17. Chen Quan, Yang Jianmei, Zeng Jinqun. Null model and its application in the research of complex networks[J]. Complex Systems and Complexity Science, 2013(1):8-17.
[15] 尚可可, 许小可. 基于置乱算法的复杂网络零模型构造及其应用[J]. 电子科技大学学报, 2014, 43(1):7-20. Shang Keke, Xu Xiaoke. Construction and application for null models of complex networks based on randomized algorithms[J]. Journal of University of Electronic Science and Technology of China, 2014, 43(1):7-20.
[16] 崔丽艳, 许小可. 参照零模型的双层网络结构相关性检测[J]. 科技导报, 2017, 35(14):63-74. Cui Liyan, Xu Xiaoke. Correlation detection of double-layer network based on null models[J]. Science & Technology Review, 2017, 35(14):63-74.
[17] 陈关荣, 汪小帆, 李翔. 复杂网络引论:模型、结构与动力学[M]. 北京:高等教育出版社, 2012:217-218. Chen Guanrong, Wang Xiaofan, Li Xiang. Introduction to complex networks:Models, structures and dynamics[M]. Beijing:Higher Education Press. 2012:217-218.
[18] Zhao M, Zhou T, Wang B, et al. Relations between average distance, heterogeneity and network synchronizability[J]. Physica A-statistical Mechanics and Its Applications, 2006, 371(2):773-780.
[19] Colizza V, Flammini A, Serrano M A, et al. Detecting richclub ordering in complex networks[J]. Nature Physics, 2006, 2(2):110-115.
[20] 李欢, 卢罡, 郭俊霞. 复杂网络零模型的量化评估[J]. 计算机应用, 2015, 35(6):1560-1563, 1572. Li Huan, Lu Gang, Guo Junxia. Quantitative evaluation for null models of complex networks[J]. Journal of Computer Applications. 2015, 35(6):1560-1563, 1572.
[21] Cartwright D, Harary F. Structural balance:A generalization of heider's theory[J]. Psychological Review, 1956, 63(5):277-293.
[22] Zhang Q, Lu L, Wang W, et al. Potential theory for directed networks[J]. PLoS One, 2013, 8(2):e55437.
[23] Leskovec J, Huttenlocher D, Kleinberg J. Predicting positive and negative links in online social networks[C]//Proceedings of Nineteenth International Conference on World Wide Web (WWW2010). Raleigh, USA:ACM Press, 2010:641-650.
文章导航

/