研究论文

超亲水薄膜表面接触角的高精度测量

  • 张天 ,
  • 田汉民 ,
  • 戎小莹 ,
  • 赵昆越 ,
  • 郭丹
展开
  • 河北工业大学电子信息工程学院, 天津 300401
张天,硕士研究生,研究方向为集成电路应用,电子信箱:18202538977@163.com

收稿日期: 2017-09-06

  修回日期: 2017-10-19

  网络出版日期: 2018-04-27

基金资助

中国博士后科学基金面上资助项目(2015M581282);河北省留学人员择优资助项目(C2015003040)

High precision contact angle algorithms for ultra hydrophilic film surface

  • ZHANG Tian ,
  • TIAN Hanmin ,
  • RONG Xiaoying ,
  • ZHAO Kunyue ,
  • GUO Dan
Expand
  • School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, China

Received date: 2017-09-06

  Revised date: 2017-10-19

  Online published: 2018-04-27

摘要

作为极端润湿表面的一种,超亲水薄膜表面由于具有自清洁、防雾、防腐蚀等特性,成为现代工业、城市建设等领域的研究重点之一。界定极端润湿表面的一种方法为接触角的测量,因此获得更高精度的接触角对极端润湿表面工程具有重要意义。讨论了在超亲水薄膜表面提高接触角精度的3种算法,包括量高法、圆拟合法及椭圆拟合法,结果显示接触角在接近0°时通过圆拟合算法能够提高计算精度。

本文引用格式

张天 , 田汉民 , 戎小莹 , 赵昆越 , 郭丹 . 超亲水薄膜表面接触角的高精度测量[J]. 科技导报, 2018 , 36(8) : 65 -70 . DOI: 10.3981/j.issn.1000-7857.2018.08.007

Abstract

As a kind of extremely wetting surface, the surface of superhydrophilic film has become one of the focuses of research in the field of the modern industry and the urban construction because of its self-cleaning, anti-fog and anti-corrosion properties. One method of defining extremely wetting surfaces is the measurement of contact angles, therefore, it is significant to obtain a high precision contact angle in the extremely wetting surface engineering. In this paper, several contact angle algorithms for improving contact angle accuracy for the ultra hydrophilic film surface are proposed, including the high volume method, the circle fitting method and the ellipse fitting method. In addition, it is shown that the accuracy of the calculation can be improved by the circular fitting algorithm when the contact angle is close to zero.

参考文献

[1] 宋金龙, 陆遥, 黄帅, 等. 极端润湿性表面研究与应用进展[J]. 科技导报, 2015, 33(15):92-100. Song Jinlong, Lu Yao, Huang Shuai, et al. Progress on research and application of extreme wettability surfaces[J]. Science & Technology Review, 2015, 33(15):92-100.
[2] 陈恒真, 耿铁, 张霞, 等. 超疏水表面研究进展[J]. 化学研究, 2013(4):434-440. Chen Hengzhen, Geng Tie, Zhang Xia, et al. Research progress of superhydrophobic surface[J]. Chemical Research, 2013(4):434-440.
[3] Xue Z, Liu M, Jiang L. Recent developments in polymeric superoleophobic surfaces[J]. Journal of Polymer Science Part B, Polymer Physics, 2012, 50(17):1209-1224.
[4] Wang J N, Shao R Q, Zhang Y L, et al. Cover picture:Biomimetic graphene surfaces with superhydrophobicity and iridescence[J]. Chemistry-An Asian Journal, 2012, 7(2):301.
[5] 曲爱兰, 文秀芳, 皮丕辉, 等. 疏水性耐玷污涂料[J]. 化工进展, 2006, 25(11):1261-1265. Qu Ailan, Wen Xiufang, Pi Pihui, et al. Hydrophobic stain-resistant paint[J]. Chemical Industry Engineering Progress, 2006, 25(11):1261-1265.
[6] Ebert D, Bhushan B. Transparent, superhydrophobic, and wearresistant coatings on glass and polymer substrates using SiO2, ZnO, and ITO nanoparticles[J]. Langmuir, 2012, 28(31):11391-11399.
[7] Chen Y, Zhang Y, Shi L, et al. Transparent superhydrophobic/superhydrophilic coatings for self-cleaning and anti-fogging[J]. Applied Physics Letters, 2012, 101(3):15670.
[8] 郑建勇, 钟明强, 冯杰. 基于超亲水原理的自清洁表面研究进展及产业化状况[J]. 材料导报, 2009, 23(增刊1):42-44. Zheng Jianyong, Zhong Mingqiang, Feng Jie. Research progress and industrial manufacture status of superhydrophilic selfcleaning surfaces[J]. Materials Review, 2009, 23(Suppl 1):42-44.
[9] Faustini M, Nicole L, Boissière C, et al. Hydrophobic, antireflective, self-cleaning, and antifogging sol-gel coatings:An example of multifunctional nanostructured materials for photovoltaic cells[J]. Chemistry of Materials, 2010, 22(15):4406-4413.
[10] Antonini C, Innocenti M, Horn T, et al. Understanding the effect of superhydrophobic coatings on energy reduction in antiicing systems[J]. Cold Regions Science & Technology, 2011, 67(1/2):58-67.
[11] 何庆迪, 蔡青青, 史立平, 等. 自清洁涂料的技术发展[J]. 涂料技术与文摘, 2012, 33(7):30-34. He Qingdi, Cai Qingqing, Shi Liping, et al. Progerss in selfcleaning coatings[J]. Coatings Technology & Abstracts, 2012, 33(7):30-34.
[12] 杜文琴, 巫莹柱. 接触角测量的量高法和量角法的比较[J]. 纺织学报, 2007, 28(7):29-32. Du Wenqin, Wu Yingzhu. Comparison of hypsometry and goniometry in contact angle measurement[J]. Journal of Textile Research, 2007, 28(7):29-32.
[13] Calvo R, Gómez E, Domingo R. Circle fitting from the polarity transformation regression[J]. Precision Engineering, 2013, 37(4):908-917.
[14] 徐志钮, 律方成, 李嫚, 等. 椭圆拟合算法在硅橡胶憎水性检测应用中影响因素的研究[J]. 绝缘材料, 2011, 44(1):69-73. Xu Zhiniu, Lü Fangcheng, Li Man, et al. Factor influencing the application of ellipse fitting algorithm in silicone rubber hydrophobicity detection[J]. Insulation Materials, 2011, 44(1):69-73.
[15] 徐志钮, 由强, 胡世勋, 等. 憎水性对量角法用于静态接触角计算时准确性的影响[J]. 高电压技术, 2013, 39(11):2631-2641. Xu Zhiniu, You Qiang, Hu Shixun, et al. Influence of hydrophobicity on accuracy of goniometry method used for static contact angle calculation[J]. High Voltage Engineering, 2013, 39(11):2631-2641.
[16] Santos R G D, Mohamed R S, Bannwart A C, et al. Contact angle measurements and wetting behavior of inner surfaces of pipelines exposed to heavy crude oil and water[J]. Journal of Petroleum Science & Engineering, 2006, 51(1/2):9-16.
[17] Katoh K, Yu T, Yamamoto M, et al. A new method for measuring contact angle and liquid surface tension applying detachment of two-dimensional meniscus[J]. Journal of Colloid & Interface Science, 1998, 202(1):54-62.
[18] 李健, 纪敬虎, 何鹏. 液滴图片数字化引起的超疏表面接触角测量误差模拟研究[J]. 科学技术与工程, 2017, 17(6):127-131. Li Jian, Ji Jinghu, He Peng. Simulation study on measurement error of superhydrophobic surface contact angle caused by digital image of drop[J]. Science Technology and Engineering, 2017, 17(6):127-131.
[19] De Guevara I L, Muñoz J, De Cozar O D, et al. Robust fitting of circle arcs[J]. Journal of Mathematical Imaging and Vision, 2011, 40(2):147-161.
[20] Rosin P L. Ellipse fitting by accumulating five-point fits[J]. Pattern Recognition Letters, 1993, 14(8):661-669.
[21] Sheng L Y, Sun K H, Li C B. Study of a discrete chaotic system based on tangent-delay for elliptic reflecting cavity and its properties[J]. Acta Physica Sinica, 2004, 53(9):2871-2876.
[22] Geuskens G, Etoc A, Michele P D. Surface modification of polymers VⅡ:Photochemical grafting of acrylamide and Nisopropylacrylamide onto polyethylene initiated by anthraquinone-2-sulfonate adsorbed at the surface of the polymer[J]. European Polymer Journal, 2000, 36(2):265-271.
[23] Kasemir K U, Betzler K. Detecting ellipses of limited eccentricity in images with high noise levels[J]. Image & Vision Computing, 2003, 21(2):221-227.
[24] Shapiro H S, Tegmark M. An elementary proof that the biharmonic green function of an eccentric ellipse changes sign[M]. Society for Industrial and Applied Mathematics, 1994.
文章导航

/