专题论文

基于全息光学的虚拟现实与增强现实技术进展

  • 何泽浩 ,
  • 隋晓萌 ,
  • 赵燕 ,
  • 曹良才 ,
  • 金国藩
展开
  • 清华大学精密仪器系, 精密测试技术及仪器国家重点实验室, 北京 100084
何泽浩,博士研究生,研究方向为全息三维显示,电子信箱:hezh17@mails.tsinghua.edu.cn

收稿日期: 2018-04-10

  修回日期: 2018-04-26

  网络出版日期: 2018-05-19

基金资助

国家基础研究计划项目(2013CB32881);国家自然科学基金项目(61361160418,61327902)

The development trend of virtual reality and augmented reality technology based on holographic optics

  • HE Zehao ,
  • SUI Xiaomeng ,
  • ZHAO Yan ,
  • CAO Liangcai ,
  • JIN Guofan
Expand
  • State Key Laboratory of Precision Measurement Technology and Instrument;Department of Precision Instruments, Tsinghua University, Beijing 100084, China

Received date: 2018-04-10

  Revised date: 2018-04-26

  Online published: 2018-05-19

摘要

介绍了VR/AR产业发展的现状及未来趋势,从显示技术的角度阐述了目前主流VR/AR产品使用的技术方案,并比较了双目视觉、光场显示和全息显示3种VR/AR方案的优缺点。针对当前VR/AR主流方案存在的问题,提出了全息光学技术在VR/AR产品中的优势和在产业中的作用,特别是,归纳了全息光学技术在近眼显示领域的进展及其对VR/AR产业发展的意义。分析了全息光学和VR/AR产业在结合过程中所面临的挑战,并对基于全息光学的VR/AR产业发展进行了展望。

本文引用格式

何泽浩 , 隋晓萌 , 赵燕 , 曹良才 , 金国藩 . 基于全息光学的虚拟现实与增强现实技术进展[J]. 科技导报, 2018 , 36(9) : 8 -17 . DOI: 10.3981/j.issn.1000-7857.2018.09.001

Abstract

The current situation and development trend of virtual reality (VR) and augmented reality (AR) industry are introduced. In terms of display technology, the main technical proposals of current VR/AR equipment are reviewed. The advantages and disadvantages of these technical schemes are compared in detail. Aimed at the issues of these technical solutions, the advantages of holographic optical technology are put forward and the role of holographic optical technology in VR/AR industry is clarified. The latest developments of holographic optics in near eye display are investigated. The significance of these achievements for VR/AR industry is addressed. Finally, the challenges faced by holographic optics in VR/AR industry are analyzed. The development trend of VR/AR industry based on holographic optics is also predicted.

参考文献

[1] 张明宇, 王东辰. 虚拟现实技术知识产权现状分析[J]. 科技传播, 2015, 7(13):127-128. Zhang Dewen, Wang Dongchen. Analysis of the status of intellectual properties of virtual reality technology[J]. Public Communication of Science & Technology, 2015, 7(13):127-128.
[2] Bellini H, Chen W, Sugiyama M, et al. Profiles in innovation of virtual & augmented reality[R]. New York:Goldman Sachs, 2016.
[3] 马静怡. 虚拟现实、增强现实、混合现实与数字出版[J]. 新闻研究导刊, 2016, 7(7):303. Ma Jingyi. Virtual reality, augmented reality, mixed reality and digital publication[J]. Journal of News Research, 2016, 7(7):303.
[4] 王琼华. 3D显示技术与器件[M]. 北京:科学出版社, 2011. Wang Qionghua. 3D display technology and elements[M]. Beijing:Science Press, 2011.
[5] Han J, Liu J, Yao X, et al. Portable waveguide display system with a large field of view by integrating freeform elements and volume holograms[J]. Optics Express, 2015, 23(3):3534-3549.
[6] 李书印, 万明习, 李新肖, 等. 虚拟环境中的视觉感知[J]. 中国图像图形学报, 2000, 5(11):906-910. Li Shuyin, Wan Mingxi, Li Xinxiao, et al. Visual perception in virtual environment[J]. Journal of Image and Graphics, 2000, 5(11):906-910.
[7] 秦克诚, 刘培森, 陈家璧,等. 傅里叶光学导论[M]. 第3版. 北京:电子工业出版社, 2013:211-216. Qin Kecheng, Liu Peisen, Chen Jiabi, et al. Introduction to Fourier optics[M]. 3rd edition. Beijing:Publishing House of Electronics Industry, 2013:211-216.
[8] Kozma A, Kelly D L. Spatial filtering for detection of signals submerged in Noise[J]. Applied Optics, 1965, 4(4):465-473.
[9] Moon E, Kim M, Roh J, et al. Holographic head-mounted display with RGB light emitting diode light source[J]. Optics Express, 2014, 22(6):6526-6534.
[10] Chen J S, Chu D P. Improved layer-based method for rapid hologram generation and real-time interactive holographic display applications[J]. Optics Express, 2015, 23(14):18143-18155.
[11] Gao Q, Liu J, Duan X, et al. Compact see-through 3D headmounted display based on wave front modulation with holographic grating filter[J]. Optics Express, 2017, 25(7):8412-8424.
[12] Maimone A, Georgiou A, Kollin J S. Holographic near-eye displays for virtual and augmented reality[J]. ACM Transactions on Graphics, 2017, 36(4):8501-8516.
[13] Waters J P. Holographic image synthesis utilizing theoretical methods[J]. Applied Physics Letters, 1966, 9(11):405-407.
[14] Matsushima K. Computer-generated holograms for three-dimensional surface objects with shade and texture[J]. Applied Optics, 2005, 44(22):4607-4614.
[15] Lucente M E. Interactive computation of holograms using a lookup table[J]. Journal of Electronic Imaging, 1995, 2(1):28-34.
[16] Shimobaba T, Masuda N, Tomoyoshi Ito. Simple and fast calculation algorithm for computer-generated hologram with wavefront recording plane[J]. Optics Letters, 2009, 34(20):3133-3135.
[17] Shimobaba T, Nakayama H, Masuda N, et al. Rapid calculation algorithm of Fresnel computer-generated-hologram using lookup table and wavefront-recording plane methods for three-dimensional display[J]. Optics Express, 2010, 18(19):19504-19509.
[18] Kim S C, Kim E S. Effective generation of digital holograms of three-dimensional objects using a novel lookup table method[J]. Applied Optics, 2008, 47(19):55-62.
[19] Kim S C, Kim J M, Kim E S. Effective memory reduction of the novel lookup table with one-dimensional sub-principle fringe patterns in computer-generated holograms[J]. Optics Express, 2012, 20(11):12021-12034.
[20] Nishitsuji T, Shimobaba T, Kakue T, et al. Fast calculation of computer-generated hologram using run-length encoding based recurrence relation[J]. Optics Express, 2015, 23(8):9852-9857.
[21] Shimobaba T, Tomoyoshi Ito, Masuda N, et al. Fast calculation of computer-generated-hologram on AMD HD5000 series GPU and OpenCL[J]. Optics Express, 2010, 18(10):9955-9960.
[22] Song J, Park J, Park J I. Fast Calculation of computer-generated holography using multi-graphic processing units[C]//IEEE International symposium on broadband multimedia systems and broadcasting. Piscataway, NJ:IEEE, 2012:1-5.
[23] Ichihashi Y, Nakayama H, Tomoyoshi Ito, et al. HORN-6 special-purpose clustered computing system for electroholography[J]. Optics Express, 2009, 17(16):13895-13903.
[24] Nishi S, Shiba K, Mori K, et al. Fast calculation of computergenerated Fresnel hologram utilizing distributed parallel processing and array operation[J]. Optical Review, 2005, 12(4):287-292.
[25] Trester S. Computer-simulated Fresnel holography[J]. European Journal of Physics, 2000, 21(21):317-331.
[26] Sando Y, Itoh M, Yatagai T. Holographic three-dimensional display synthesized from three-dimensional Fourier spectra of real existing objects[J]. Optics Letters, 2003, 28(24):2518-2520.
[27] Bayraktar M, Özcan M. Method to calculate the far field of three-dimensional objects for computer-generated holography[J]. Applied Optics, 2010, 49(24):4647-4654.
[28] Chen J S, Smithwick Q Y. Rapid hologram generation utilizing layer-based approach and graphic rendering for realistic three-dimensional image reconstruction by angular tiling[J]. Journal of Electronic Imaging, 2014, 23(2):76-85.
[29] Zhao Y, Cao L, Zhang H, et al. Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method[J]. Optics Express, 2015, 23(20):25440-25449.
[30] Muffoletto R P, Tyler J M, Tohline J E. Shifted Fresnel diffraction for computational holography[J]. Optics Express, 2007, 15(9):5631-5640.
[31] Okada N, Shimobaba T, Ichihashi Y, et al. Fast calculation of a computer-generated hologram for RGB and depth images using a wavefront recording plane method[J]. Photonics Letters of Poland, 2014, 6(3):90-92.
[32] Zhang F, Yamaguchi I, Yaroslavsky L P. Algorithm for reconstruction of digital holograms with adjustable magnification[J]. Optics Letters, 2004, 29(14):1668-1670.
[33] Li Y, Abookasis D, Rosen J. Computer-generated holograms of three-dimensional realistic objects recorded without wave interference[J]. Applied Optics, 2001, 40(17):2864-2870.
[34] Shaked N T, Rosen J. Modified Fresnel computer-generated hologram directly recorded by multiple-viewpoint projections[J]. Applied Optics, 2008, 47(19):21-27.
[35] Hahn J, Kim H, Lim Y, et al. Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators[J]. Optics Express, 2008, 16(16):12372-12386.
[36] Lum Z, Liang X, Pan Y, et al. Increasing pixel count of holograms for three-dimensional holographic display by optical scan-tiling[J]. Optical Engineering, 2013, 52(1):15802-15802.
[37] Tay S, Blanche P A, Voorakaranam R, et al. An updatable holographic three dimensional display[J]. Nature, 2008, 451(7179):694-698.
[38] Smalley D E, Smithwick Q Y, Bove V M, et al. Anisotropic leaky-mode modulator for holographic video displays[J]. Nature, 2013, 498(7454):313-317.
[39] Li X, Ren H, Chen X, et al. Athermally photoreduced graphene oxides for three-dimensional holographic images[J]. Nature Communications, 2015, 6(6984):1-7.
[40] Wang Q, Rogers E, Gholopour B, et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials[J]. Nature Photonics, 2016, 10(1):60-65.
文章导航

/