专题论文

压缩成像技术的应用与挑战

  • 张华 ,
  • 曹良才 ,
  • 金国藩 ,
  • 白瑞迪
展开
  • 1. 清华大学精密仪器系, 精密测试技术及仪器国家重点实验室, 北京 100084;
    2. 杜克大学电子与计算机工程系, 美国北卡罗莱那州达勒姆 27708
张华,博士研究生,研究方向为数字全息压缩成像,电子信箱:zhanghua14@mails.tsinghua.edu.cn

收稿日期: 2018-04-20

  网络出版日期: 2018-05-22

基金资助

国家自然科学基金项目(61327902)

Applications and challenges of compressed imaging

  • ZHANG Hua ,
  • CAO Liangcai ,
  • JIN Guofan ,
  • David J. Brady
Expand
  • 1. State Key Laboratory of Precision Measurement Technology and Instrument;Department of Precision Instruments, Tsinghua University, Beijing 100084, China;
    2. Department of Electronic and Computer Engineering, Duke University, Durham, North Carolina 27708, USA

Received date: 2018-04-20

  Online published: 2018-05-22

摘要

概述了压缩成像的发展历史和研究现状。从边际成本的角度分析了压缩成像在不同电磁谱波段上的应用特点,指出压缩成像系统需要综合考虑特定应用场景下的器件成本和计算成本等因素设计采样模型和恢复算法。从全光函数的角度,介绍了利用压缩成像技术实现不同维度数据压缩采样的案例,分析了压缩成像技术的优势。探讨了压缩成像技术在理论突破和应用上面临的挑战,表明高稳定性和系统兼容性的压缩感知系统设计是压缩成像大规模应用面临的一个难题。

本文引用格式

张华 , 曹良才 , 金国藩 , 白瑞迪 . 压缩成像技术的应用与挑战[J]. 科技导报, 2018 , 36(10) : 20 -29 . DOI: 10.3981/j.issn.1000-7857.2018.10.003

Abstract

This paper reviews the development and the applications of the modern compressive imaging in the whole electromagnetic spectra from the perspective of the marginal cost. The values of the compressive imaging need to be considered in the perspective of the hardware cost and the computational expense when the compressive models and the reconstruction algorithms are designed. Based on the plenoptic function, a couple of successful applications are presented to show the advantages in compressing different data. The challenges of the compressive imaging are presented in practical applications. For the large-scale applications of compressive imaging, it is a challenging task to design a compressed sensing model with high stability and good compatibility.

参考文献

[1] Zernike F. Phase contrast, a new method for the microscopic observation of transparent objects[J]. Physica, 1942, 9(7):686-698.
[2] Gabor D. A new microscopic principle[J]. Nature, 1948, 161(4098):777-778.
[3] Gabor D. Microscopy by reconstructed wave-fronts[J]. Proceed-ings of the Royal Society of London, Mathematical and Physi-cal Sciences, 1949, 197(1051):454-487.
[4] Ryle M, Vonberg D D. Solar radiation on 175 Mc./s[C]//Clas-sics in Radio Astronomy. Dordrecht:Springer Netherlands, 1946:184-187.
[5] Siegbahn K. Ⅲ-Beta-ray spectrometer theory and design, mag-netic alpha-ray spectroscopy, high resolution spectroscopy[C]//Siegbahn K. Alpha-, Beta-and Gamma-ray Spectroscopy (vol 1). Amsterdam:North-Holland Publishing Company, 1965:79-94.
[6] Ernst R, Emil H, Kreis O, et al. Electronic microscope:US 2277024 A[P]. 1942.
[7] Binnig G, Rohrer H. Scanning tunneling microscopy[J]. IBM Journal of Research & Development, 2000, 44(1/2):279-293.
[8] Zewail A H. Femtochemistry:Ultrafast dynamics of the chemi-cal bond[M]. London:World Scientific, 1994.
[9] Hell S W, Wichmann J. Breaking the diffraction resolution lim-it by stimulated emission:Stimulated-emission-depletion fluo-rescence microscopy[J]. Optics Letters, 1994, 19(11):780-782.
[10] Willig K I, Kellner R R, Medda R, et al. Nanoscale resolution in GFP-based microscopy[J]. Nature Methods, 2006, 3(9):721-723.
[11] Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellu-lar fluorescent proteins at nanometer resolution[J]. Science, 2006, 313(5793):1642-1645.
[12] Bates M, Huang B, Rust M J, et al. Sub-diffraction-limit im-aging with stochastic optical reconstruction microscopy[J]. Na-ture Methods, 2010, 3(10):793.
[13] Boyle W S, Smith G E. The inception of charge-coupled de-vices[J]. IEEE Transactions on Electron Devices, 1976, 23(7):661-663.
[14] Dai Q H. Special feature on computational photography[J]. Frontiers of Information Technology & Electronic Engineer-ing, 2017, 18(9):1205-1206.
[15] 索津莉, 刘烨斌, 季向阳, 等. 计算摄像学:核心、方法与应用[J]. 自动化学报, 2015, 41(4):669-685. Suo Jinli, Liu Yebin, Ji Xiangyang, et al, Computational pho-tography:Keys, methods and applications[J]. Acta Automatica Sinica, 2015, 41(4):669-685.
[16] Candès E J, Romberg J, Tao T. Robust uncertainty principles:Exact signal frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2):489-509.
[17] Donoho D L. Compressed sensing[J]. IEEE Transactions on In-formation Theory, 2006, 52(4):1289-1306.
[18] Chaudhuri S. Super-resolution imaging[M]. New York:Spring-er, 2001.
[19] Milanfar P. Super-resolution imaging[M]. Boca Raton:CRC Press, 2010.
[20] Fienup J R. Reconstruction of an object from the modulus of its Fourier transform[J]. Optics Letters, 1978, 3(1):27-29.
[21] Gonsalves R A. Phase retrieval and diversity in adaptive op-tics[J]. Optical Engineering, 1982, 21(5):829-832.
[22] Dekker A J D, Bos A V D. Resolution:A survey[J]. Journal of the Optical Society of America A, 1997, 14(3):547-557.
[23] Klar T A, Jakobs S, Dyba M, et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emis-sion[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(15):8206-8210.
[24] Westphal V, Rizzoli S O, Lauterbach M A, et al. Video-rate far-field optical nanoscopy dissects synaptic vesicle movement[J]. Science, 2008, 320(5873):246-249.
[25] Carasso A S. APEX blind deconvolution of color Hubble space telescope imagery and other astronomical data[J]. Opti-cal Engineering, 2006, 45(10):2134-2137.
[26] Swedlow J R. Quantitative fluorescence microscopy and image deconvolution[J]. Methods in Cell Biology, 2013, 114(72):407-426.
[27] Lyon R G, Miller P E. HST phase retrieval:A parameter esti-mation[C]//SPIE Proceedings (Vol 1567) of International Soci-ety for Optics and Photonics. New York:SPIE, 1991:317-326.
[28] Johnson W B. Extensions of Lipschitz mappings into Hilbert space[J]. Contemporary Mathematics, 1984, 26:189-206.
[29] Candes E J, Tao T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12):4203-4215.
[30] Mallat S G, Zhang Z. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12):3397-3415.
[31] Candes E J, Tao T. Near-optimal signal recovery from ran-dom projections:Universal encoding strategies[J]. IEEE Trans-actions on Information Theory, 2004, 52(12):5406-5425.
[32] Candes E J, Romberg J. Errata for quantitative robust uncer-tainty principles and optimally sparse decompositions[J]. Foundations of Computational Mathematics, 2006, 6(2):227-254.
[33] Brady D J, Choi K, Marks D L, et al. Compressive holography[J]. Optics Express, 2009, 17(15):13040-13049.
[34] Liu Y, Tian L, Lee J W, et al. Scanning-free compressive ho-lography for object localization with subpixel accuracy[J]. Op-tics Letters, 2012, 37(16):3357-3359.
[35] Liu Y, Tian L, Hsieh C H, et al. Compressive holographic two-dimensional localization with 1/30(2) subpixel accuracy[J]. Optics Express, 2014, 22(8):9774-9782.
[36] Gehm M E, John R, Brady D J, et al. Single-shot compres-sive spectral imaging with a dual-disperser architecture[J]. Optics Express, 2007, 15(21):14013-14027.
[37] Wagadarikar A, John R, Willett R, et al. Single disperser de-sign for coded aperture snapshot spectral imaging[J]. Applied Optics, 2008, 47(10):44-51.
[38] Kittle D, Choi K, Wagadarikar A, et al. Multiframe image esti-mation for coded aperture snapshot spectral imagers[J]. Ap-plied Optics, 2010, 49(36):6824-6833.
[39] Wagadarikar A A, Pitsianis N P, Sun X, et al. Video rate spectral imaging using a coded aperture snapshot spectral im-ager[J]. Optics Express, 2009, 17(8):6368-6388.
[40] Gao L, Liang J, Li C, et al. Single-shot compressed ultrafast photography at one hundred billion frames per second[J]. Na-ture, 2014, 516(7529):74-77.
[41] Ng R, Marc L, Mathieu B, et al. Light field photography with a hand-held plenoptic camera[R/OL].[2018-03-31]. http://graphics.stanford.edu/papers/lfcamera/lfcamera-150dpi.pdf.
[42] Marwah K, Wetzstein G, Veeraraghavan A, et al. Compressive light field photography[J]. ACM Transactions on Graphics, 2012, 32(4), doi:10.1145/2343045.2343101.
文章导航

/