专题论文

脑机接口技术的神经康复与新型应用

  • 明东 ,
  • 安兴伟 ,
  • 王仲朋 ,
  • 万柏坤
展开
  • 1. 天津大学医学工程与转化医学研究院, 天津 300072;
    2. 天津大学精密仪器与光电子工程学院, 天津 300072
明东,教授,研究方向为神经传感与成像、神经接口与康复、神经刺激与调控等,电子信箱:richardming@tju.edu.cn

收稿日期: 2018-05-10

  修回日期: 2018-05-29

  网络出版日期: 2018-06-21

基金资助

国家自然科学基金项目(81630051,91648122,81601565,61603269);天津市科技支撑计划项目(17ZXRGGX00020,16ZXHLSY00270)

Neural rehabilitation and new application of brain-computer interface technology

  • MING Dong ,
  • AN Xingwei ,
  • WANG Zhongpeng ,
  • WAN Baikun
Expand
  • 1. Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China;
    2. School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China

Received date: 2018-05-10

  Revised date: 2018-05-29

  Online published: 2018-06-21

摘要

脑机接口(BCI)是脑认知神经科学与工程技术的一种新型人机信息交互方式,可无需依赖常规外周神经肌肉便能实现人意念思维与外界环境和设备的信息交互及操作控制,使“思想”直接变成“行动”,现已成为大脑认知机制解密、智能人机交互开发的全新“窗口”,也是未来人-机交互式混合智能发展的核心。本文综述了脑机接口在助力人工智能的科技背景、研究现状、应用领域及未来发展趋势。

本文引用格式

明东 , 安兴伟 , 王仲朋 , 万柏坤 . 脑机接口技术的神经康复与新型应用[J]. 科技导报, 2018 , 36(12) : 31 -37 . DOI: 10.3981/j.issn.1000-7857.2018.12.005

Abstract

As a new interactive combination technique of the brain cognitive neuroscience and engineering technology, the brain computer interfaces serve the connection between the human and the outer devices without the contact of the limb or neuromuscular system, and turn what is in the mind to real actions. BCIs are a new "window" of the brain science research, the brain cognitive mechanism and the intelligent human computer interaction application development. This paper reviews the research background, the research status and the future development trend of the BCIs technology.

参考文献

[1] 唐孝威. 脑科学导论[M]. 杭州:浙江大学出版社, 2006. Tang Xiaowei. Introduction to brain science[M]. Hangzhou:Zhe-jiang University Press, 2006.
[2] Poo M M, Du J L, Ip N Y, et al. China Brain Project:Basic neuroscience, brain diseases, and brain-inspired computing[J]. Neuron, 2016, 92(3):591-596.
[3] Wolpaw J R, Birbaumer N, McFarland D J, et al. Brain-com-puter interfaces for communication and control[J]. Clinical Neu-rophysiology, 2002, 113(6):767-791.
[4] Wolpaw J R, Birbaumer N, Heetderks W J, et al. Brain-com-puter interface technology:A review of the first international meeting[J]. IEEE Transactions on Rehabilitation Engineering, 2000, 8(2):164-173.
[5] Wolpaw J, Wolpaw E W. Brain-computer interfaces:Principles and practice[M]. Oxford:Oxford University Press, 2012.
[6] Müller-Putz G R, Daly I, Kaiser V. Motor imagery-induced EEG patterns in individuals with spinal cord injury and their impact on brain-computer interface accuracy[J]. Journal of Neural Engineering, 2014, 11(3):035011.
[7] Mainsah B O, Collins L M, Colwell K A, et al. Increasing BCI communication rates with dynamic stopping towards more prac-tical use:An ALS study[J]. Journal of Neural Engineering, 2015, 12(1):016013.
[8] Höhne J, Holz E, Staiger-Sälzer P, et al. Motor imagery for se-verely motor-impaired patients:Evidence for brain-computer interfacing as superior control solution[J]. PLoS One, 2014, 9:e104854-e104854.
[9] Burns A, Adeli H, Buford J A. Brain-computer interface after nervous system injury[J]. Neuroscientist, 2014, 20(6):639-651.
[10] Thompson D E, Quitadamo L R, Mainardi L, et al. Perfor-mance measurement for brain-computer or brain-machine in-terfaces:A tutorial[J]. Journal of Neural Engineering, 2014, 11(3):035001.
[11] Cecotti H. Spelling with non-invasive Brain-computer inter-faces-current and future trends[J]. Journal of Physiology-Par-is, 2011, 105(1):106-114.
[12] Kaiser V, Kreilinger A, Müller-Putz G R, et al. First steps to-ward a motor imagery based stroke BCI:New strategy to set up a classifier[J]. Frontiers in Neuroscience, 2011, 5:86.
[13] Tangwiriyasakul C, Mocioiu V, Van Putten M J, et al. Classifi-cation of motor imagery performance in acute stroke[J]. Jour-nal of Neural Engineering, 2014, 11(3):036001.
[14] Nicolas-Alanso L F, Corralejo R, Gomez-Pilar J, et al. Adap-tive stacked generalization for multiclass motor imagerybased brain computer interfaces[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2015, 23(4):702-712.
[15] 明东, 王坤, 何峰, 等. 想象动作诱发生理信息检测及其应用研究:回顾与展望[J]. 仪器仪表学报, 2014, 35(9):1921-1931. Ming Dong, Wang Kun, He Feng, et al. Study on physiologi-cal information detection and application evoked by motor im-agery:Review and prospect[J]. Chinese Journal of Scientific Instrument, 2014, 35(9):1921-1931.
[16] Mccane L M, Heckman S M, Mcfarland D J, et al. P300-based brain-computer interface (BCI) event-related potentials (ERPs):People with amyotrophic lateral sclerosis (ALS) vs. age-matched controls[J]. Clinical Neurophysiology, 2015, 126(11):2124-2131.
[17] Xu M, Chen L, Zhang L, et al. A visual parallel-BCI speller based on the time-frequency coding strategy[J]. Journal of Neural Engineering, 2014, 11(2):026014.
[18] Chen X, Wang Y, Nakanishi M, et al. High-speed spelling with a noninvasive brain-computer interface[J]. Proceedings of the National Academy of Sciences, 2015, 112(44):E6058-E6067.
[19] Yi W, Shuang Q, Qi H, et al. EEG feature comparison and classification of simple and compound limb motor imagery[J]. Journal of Neuroengineering & Rehabilitation, 2013, 10(8):541-544.
[20] Simon N, Käthner I, Ruf C A, et al. An auditory multiclass brain-computer interface with natural stimuli:Usability evalu-ation with healthy participants and a motor impaired end user[J]. Frontiers in Human Neuroscience, 2014, 8(1039):1039.
[21] Kaufmann T, Herweg A, Kübler A. Toward brain-computer in-terface based wheelchair control utilizing tactually-evoked event-related potentials[J]. Journal of Neuroengineering & Re-habilitation, 2014, 11(1):7.
[22] Elnady A M, Zhang X, Xiao Z G, et al. A single-session pre-liminary evaluation of an affordable BCI-controlled arm exo-skeleton and motor-proprioception platform[J]. Frontiers in Human Neuroscience, 2015, 9:168.
[23] Sczesny-Kaiser M, Höffken O, Aach M, et al. HAL® exoskel-eton training improves walking parameters and normalizes cor-tical excitability in primary somatosensory cortex in spinal cord injury patients[J]. Journal of Neuroengineering and Reha-bilitation, 2015, 12(1):68-78.
[24] Van Asseldonk E H, Boonstra T A. Transcranial direct cur-rent stimulation of the leg motor cortex enhances coordinated motor output during walking with a large inter-individual vari-ability[J]. Brain Stimulation, 2015, 9(2):182-190.
[25] Torres J, Drebing D, Hamilton R. TMS and tDCS in poststroke aphasia:Integrating novel treatment approaches with mechanisms of plasticity[J]. Restorative Neurology & Neuro-science, 2013, 31(4):501-515.
[26] Chen L, Wang Z, He F, et al. An online hybrid brain-comput-er interface combining multiple physiological signals for web-page browse[C]//Engineering in Medicine and Biology Society (EMBC), 201537th Annual International Conference of the IEEE. Piscataway NJ:IEEE, 2015:1152-1155.
[27] Throckmorton C S, Colwell K A, Ryan D B, et al. Bayesian approach to dynamically controlling data collection in P300 spellers[J]. IEEE Transactions on Neural Systems and Reha-bilitation Engineering, 2013, 21(3):508-517.
[28] Smith S. Mind-controlled exoskeleton kicks off world cup[J]. New Scientist, 2014, 6(13):2973.
[29] Xu M, Qi H, Wan B, et al. A hybrid BCI speller paradigm combining P300 potential and the SSVEP blocking feature[J]. Journal of Neural Engineering, 2013, 10(2):026001.
[30] Rupp R. Challenges in clinical applications of brain computer interfaces in individuals with spinal cord injury[J]. Frontiers in Neuroengineering, 2014, 7(7):38.
[31] Kindermans P J, Tangermann M, Müller K R, et al. Integrat-ing dynamic stopping, transfer learning and language models in an adaptive zero-training ERP speller[J]. Journal of Neural Engineering, 2014, 11(3):035005.
[32] Cantillo-Negrete J, Gutierrez-Martinez J, Carino-Escobar R I, et al. An approach to improve the performance of subjectindependent BCIs-based on motor imagery allocating subjects by gender[J]. Biomedical Engineering Online, 2014, 13(1):158.
[33] Woehrle H, Krell M M, Straube S, et al. An adaptive spatial filter for user-independent single trial detection of event-re-lated potentials[J]. IEEE Transactions on Biomedical Engi-neering, 2015, 62:1696-1705.
[34] Bryan M J, Martin S A, Cheung W, et al. Probabilistic coadaptive brain-computer interfacing[J]. Journal of Neural En-gineering, 2013, 10(6):066008.
[35] Kee C Y, Chetty R M K, Khoo B H, et al. Genetic algorithm and bayesian linear discriminant analysis based channel selec-tion method for P300 BCI[J]. Communications in Computer & Information Science, 2012, 330:226-235.
[36] Huggins J E, Wolpaw J R. Papers from the fifth international brain-computer interface meeting[J]. Journal of Neural Engi-neering, 2014, 11(3):030301-1-2.
[37] Pfurtscheller G, Neuper C, Müller G R, et al. Graz-BCI:State of the art and clinical applications[J]. IEEE Transactions on Neural Systems & Rehabilitation Engineering, 2003, 11(2):177-180.
[38] Im H, Ku J, Kim H J, et al. Virtual reality-guided motor im-agery increases corticomotor excitability in healthy volunteers and stroke patients[J]. Annals of Rehabilitation Medicine, 2016, 40(3):420-431.
[39] Kaplan A, Shishkin S, Ganin I, et al. Adapting the P300-based brain-computer interface for gaming:A review[J]. IEEE Transactions on Computational Intelligence and AI in Games, 2013, 5(2):141-149.
[40] Miralles F, Vargiu E, Dauwalder S, et al. Brain computer in-terface on track to home[J]. Scientific World Journal, 2015, doi:10.1155/2015/623896.
[41] Holz E M, Botrel L, Kaufmann T, et al. Long-term indepen-dent brain-computer interface home use improves quality of life of a patient in the locked-in state:A case study[J]. Ar-chives of Physical Medicine and Rehabilitation, 2015, 96(3):S16-S26.
文章导航

/