专题论文

青光眼生物力学研究进展

  • 钱秀清 ,
  • 宋红芳 ,
  • 刘志成
展开
  • 首都医科大学生物医学工程学院, 临床生物力学应用基础研究北京市重点实验室, 北京 100069
钱秀清,副教授,研究方向为生物力学与康复工程学,电子信箱:qianxq@ccmu.edu.cn

收稿日期: 2018-05-08

  修回日期: 2018-05-28

  网络出版日期: 2018-07-23

基金资助

国家自然科学基金项目(31570952,31670964,10802053);北京市自然科学基金项目(7152022)

Advances in glaucoma biomechanics research

  • QIAN Xiuqing ,
  • SONG Hongfang ,
  • LIU Zhicheng
Expand
  • Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application;School of Biomedical Engineering, Capital Medical University, Beijing 100069, China

Received date: 2018-05-08

  Revised date: 2018-05-28

  Online published: 2018-07-23

摘要

青光眼是全球第一位不可逆性致盲眼病,高眼压是视功能损伤的主要危险因素,降眼压是目前青光眼治疗的主要手段。生物力学问题是青光眼致病机制、预防和治疗研究的重要内容。小梁网房水外流阻力增大是眼压升高的主要因素,眼压升高将导致虹膜变形、瞳孔阻滞、眼前房房水流场改变、视神经纤维层及筛板厚度变薄、视功能损伤等。本文从眼压测量、房水流场测量、视功能损伤等方面综述了近年来青光眼生物力学的研究进展。

本文引用格式

钱秀清 , 宋红芳 , 刘志成 . 青光眼生物力学研究进展[J]. 科技导报, 2018 , 36(13) : 30 -38 . DOI: 10.3981/j.issn.1000-7857.2018.13.004

Abstract

Glaucoma ranks the first in the irreparable blindness eye diseases in the world. As the elevated intraocular pressure is the main risk factor of visual impairment, decreasing intraocular pressure is the main treatment of glaucoma at present. Therefore, the biomechanical problem of glaucoma is an important part of the research of pathogenesis, prevention and treatment of glaucoma. The main reason of high intraocular pressure for glaucoma is the increase of outflow resistance of aqueous humor. The increase of intraocular pressure will lead to iris deformation, pupil block, change of flow field of aqueous humor in the anterior chamber, thinning thickness of optic nerve fiber layer and lamina cribrosa, and damage of visual function. Recent advances in glaucoma biomechanics are introduced from aspects of intraocular pressure measurement, measurement of aqueous humor flow, visual function imparied, etc.

参考文献

[1] Allingham R R, Damji K F, Freedman S, 等. Shields青光眼教科书[M]. 5版. 王宁利, 译. 北京:人民卫生出版社, 2009:77-81. Allingham R R, Damji K F, Freedman S, et al. Shields' textbook of glaucoma[M]. 5th edition. Wang Lining, trans. Beijing:People's Medical Publishing House, 2009:77-81.
[2] Jonas J B, Wang N, Wang Y X, et al. Ocular hypertension:General characteristics and estimated cerebrospinal fluid pres-sure. The Beijing eye study 2011[J]. PloS One, 2014, 9(7):e100533, doi:10.1371/journal.pone.0100533.
[3] Zhang Z, Liu D, Jonas J B, et al. Axonal transport in the rat op-tic nerve following short-term reduction in cerebrospinal fluid pressure or elevation in intraocular pressure[J]. Investigative Ophthalmology & Visual Science, 2015, 56(8):4257-4266.
[4] Brandt J D. Corneal thickness in glaucoma screening, diagno-sis, and management[J]. Current Opinion in Ophthalmology, 2004, 15(2):85-89.
[5] Campos T V, Jacobovitz S, Almeida H G, et al. Computerized invasive measurement of time-dependent intraocular pressure[J]. Brazilian Journal of Medical & Biological Research, 2006, 39(9):1249-1253.
[6] 贾莉君, 蒋幼芹, 吴振中. 兔眼压正常值与前房穿刺直接测量法[J]. 眼科研究, 1994, 12(4):267-268. Jia Lijun, Jiang Youqin, Wu Zhenzhong. Normal intraocular pressure value of rabbits and direct method of measurement[J]. Chinese Journal of Experimental Ophthalmology, 1994, 12(4):267-268.
[7] 李婷. 动物眼前后房压强差变化规律的在体实验研究[D]. 北京:首都医科大学生物医学工程学院, 2008. Li Ting. Experimental study on the pressure difference between anterior and posterior chambers of the animal eyes[D]. Beijing:School of Biomedical Engineering, Capital Medical University, 2008.
[8] 宋红芳, 王文佳, 杨红玉, 等. 眼内前后房压强差在体连续测量的实验研究[J]. 生物医学工程学杂志. 2018, 35(3), doi:10.7507/1001-5515.201611020. Song Hongfang, Wang Wenjia, Yang Hongyu, et al. Experimental study on the in vivo continuous measurement of pressure difference between the anterior and the posterior chambers[J]. Journal of Biomedical Engineering,2018, 35(3), doi:10.7507/1001-5515.201611020.
[9] Song H, Li L, Wang W, et al. Numerical simulation of multifield coupling in aqueous humor under the condition of dynam-ic pressure[J]. International Journal of Computational Methods, 2018, doi:10.1142/S021987621842001X.
[10] 林丁, 蒋幼芹, 吴振中. 瞳孔阻滞的研究与进展[J]. 眼科, 1993, 2(4):244-247. Lin Ding, Jiang Youqin, Wu Zhenzhong. The research progress of pupillary block[J]. Ophthalmology in China, 1993, 2(4):244-247.
[11] Kondo T, Miura M, Imamichi M. Measurement method of the anterior chamber volume by image analysis[J]. British Journal of Ophthalmology, 1986, 70(9):668-672.
[12] Quigley H A, Friedman D S, Congdon N G. Possible mecha-nisms of primary angle-closure and malignant glaucoma[J]. Journal of Glaucoma, 2003, 12(2):167-180.
[13] 陈琛, 刘晓华, 林丁, 等. 基于定量瞳孔阻滞力仿真实验的虹膜组织生物力学特性分析[J]. 眼科新进展, 2006, 26(4):248-252. Chen Chen, Liu Xiaohua, Lin Ding, et al. An experiment research based on simulating pupillary blocking force to analyze mechanical properties of iris tissue quantitatively[J]. Recent Advance of Ophthalmol, 2006, 26(4):248-252.
[14] 薄雪峰. 虹膜位形变化规律及本构关系的实验研究[D]. 北京:首都医科大学生物医学工程学院, 2010. Bo Xuefeng. Experimental research on the anamorphic rule and mechanical properties of iris[D]. Beijing:School of Biomedical Engineering, Capital Medical University, 2010.
[15] Zhang K Y, Qian X Q, Mei X, et al. An inverse method to de-termine the mechanical properties of the iris in vivo[J]. Bio-medical Engineering Online, 2014, 13, doi:10.1186/1475-925X-13-66.
[16] 王万笔, 敖开忠, 樊建中, 等. 适于磁共振成像研究房水循环兔模型的建立[J]. 放射学实践, 2008, 23(10):1076-1078. Wang Wanbi, Ao Kaizhong, Fan Jianzhong, et al. Establishmen of rabbit model of aquaoculi circulation for MRI Study[J]. Radiology Practic, 2008, 23(10):1076-1078.
[17] Yang H Y, Song H F, Mei X, et al. Experimental research on intraocular aqueous flow by PIV method[J]. BioMedical Engi-neering OnLine, 2013, 12, doi:10.1186/1475-925X-12-108.
[18] 刘志成, 梅曦, 曹海勇. 一种眼前节房水循流仿真装置:201410116006.5[P]. 2014-07-02. Liu Zhicheng, Mei Xi, Cao Haiyong. A simulation device of aqueous humor flow:201410116006.5[P]. 2014-07-02.
[19] Wang W J, Qian X Q, Song H F, et al. Fluid and structure coupling analysis of the interaction between aqueous humor and iris[J]. BioMedical Engineering Online, 2016, 15(Suppl 2):569-586.
[20] Villamarin A, Roy S, Hasballa R, et al. 3D simulation of the aqueous flow in the human eye[J]. Medical Engineering Phys-ics, 2012, 34(10):1462-1470.
[21] 宋红芳. 基于在体实测前后房压强差的房水循流仿真研究[D]. 北京:首都医科大学生物医学工程学院, 2012. Song Hongfang. Simulation of the aqueous humor flow based on the pressure difference between anterior and posterior chambers in vivo[D]. Beijing:School of Biomedical Engineering, Capital Medical University, 2012.
[22] Hann C R, Fautsch M P. The elastin fiber system between and adjacent to collector channels in the human juxtacanalicu-lar tissue[J]. Investigative Ophthalmology & Visual Science, 2011, 52(1):45-50.
[23] Alvarado J A, Alvarado R G, Yeh R F, et al. A new insight into the cellular regulation of aqueous outflow:How trabecu-lar meshwork endothelial cells drive a mechanism that regu-lates the permeability of Schlemm's canal endothelial cells[J]. The British Journal of Ophthalmology, 2005, 89(11):1500-1505.
[24] 邹欢. 持续高眼压波动引起小梁网结构改变的研究[D]. 重庆:第三军医大学第三附属医院, 2014. Zou Huan. Continuous large fluctuations in intraocular pressure change the trabecular meshwork structure[D]. Chongqing:Third Affiliated Hospital, Third Military Medical University, 2014.
[25] Mei X, Ren L, Xu Q, et al. Effect of persistent high intraocu-lar pressure on microstructure and hydraulic permeability of trabecular meshwork[J]. Chinese Physics B, 2015, 24(5):058701, doi:10.1088/1674-1056/24/5/058701.
[26] Zhang J, Ren L, Mei X, et al. Microstructure visualization of conventional out fl ow pathway and finite element modeling analysis of trabecular meshwork[J]. Biomedical Engineering Online, 2016, 15(Suppl 2):323-334.
[27] Camras L J, Stamer W D, Epstein D, et al. Differential effects of trabecular meshwork stiffness on outflow facility in normal human and porcine eyes[J]. Investigative Ophthalmology & Vi-sual Science, 2012, 53(9):5242-5250.
[28] Last J A, Pan T, Ding Y, et al. Elastic modulus determination of normal and glaucomatous human trabecular meshwork[J]. Investigative Ophthalmology & Visual Science, 2011, 52(5):2147-2152.
[29] Vranka J A, Staverosky J A, Reddy A P, et al. biomechanical rigidity and quantitative proteomics analysis of segmental re-gions of the trabecular meshwork at physiologic and elevated pressures[J]. Investigative Ophthalmology & Visual Science, 2018, 59(1):246-259.
[30] Wang K, Johnstone M A, Xin C, et al. Estimating human tra-becular meshwork stiffness by numerical modeling and ad-vanced OCT imaging[J]. Investigative Ophthalmology & Visu-al Science, 2017, 58(11):4809-4817.
[31] Camras L J, Stamer W D, Epstein D, et al. Circumferential tensile stiffness of glaucomatous trabecular meshwork[J]. In-vestigative Ophthalmology & Visual Science, 2014, 55(2):814-823.
[32] Chang J, Huang J, Li L, et al. Stiffness characterization of anisotropic trabecular meshwork[J]. Journal of Biomechanics, 2017, 61:144-150.
[33] Hoyt W F, Frisén L, Newman N M. Fundoscopy of nerve fiber layer defects in glaucoma[J]. Investigative Ophthalmology & Visual Science, 1973, 12(11):814-829.
[34] Tsai J C. Optical coherence tomography measurement of reti-nal nerve fiber layer after acute primary angle closure with normal visual field[J]. American Journal of Ophthalmology, 2006, 141(5):970-972.
[35] 戴惟葭, 边俊杰, 杨惠青, 等. 急性闭角型青光眼视网膜神经纤维层改变的一年动态观察[J]. 眼科, 2010, 19(5):331-335. Dai Weijia, Bian Junjie, Yang Huiqing, et al. One year dynamic change of retinal never fiber layer thickness after acute attack in primary angle closure glaucoma[J]. Ophthalmology in China, 2010, 19(5):331-335.
[36] Schuman J S, Pedut-Kloizman T, PakteR H, et al. Optical co-herence tomography and histologic measurements of nerve fi-ber layer thickness in normal and glaucomatous monkey eyes[J]. Investigative ophthalmology & Visual Science, 2007, 48(8):3645-3654.
[37] 崔倩倩, 邱建峰, 钱秀清, 等. 急性高眼压引起视网膜神经纤维层厚度改变的规律研究[J]. 医用生物力学, 2012, 27(2):214-219. Cui Qianqian, Qiu Jianfeng, Qian Xiuqing, et al. Regularity on change of retinal nerve fiber layer thickness with acute high intraocular pressure[J]. Journal of Medical Biomechanics, 2012, 27(2):214-219.
[38] Kagemann L, Ishikawa H, Wollstein G, et al. Ultrahigh-reso-lution spectral domain optical coherence tomography imaging of the lamina cribrosa[J]. Ophthalmic Surgery Lasers & Imag-ing, 2007, 39(suppl 4):S126-S131.
[39] Zhao Q Y, Qian X Q, Li L, et al. Effect of elevated intraocu-lar pressure on the thickness changes of cat laminar and prelaminar tissue using optical coherence tomography[J]. BioMedical Materials and Engineering, 2014, 24(6):2349-2360.
[40] He D Q, Ren Z Q. A biomathematical model for pressure-de-pendent lamina cribrosa behavior[J]. Journal of Biomechanics, 1999, 32(6):579-584.
[41] Newson T, El-Sheikh A. Mathematical modeling of the biome-chanics of the lamina cribrosa under elevated intraocular pres-sures[J]. Journal of Biomechanical Engineering, 2006, 128(4):496-504.
[42] Tian H J, Li L, Song F. Study on the deformations of the lami-na cribrosa during glaucoma[J]. Acta Biomaterialia, 2017, 55:340-348.
[43] Quigley H A, Addicks E M, Green W R, et al. Optic nerve damage in human glaucoma. Ⅱ:The site of injury and suscep-tibility to damage[J]. Archives of Ophthalmology, 1981, 99(4):635-649.
[44] Roberts M D, Grau V, Grimm J, et al. Remodeling of the con-nective tissue microarchitecture of the lamina cribrosa in ear-ly experimental glaucoma[J]. Investigative Ophthalmology & Visual Science, 2009, 50(2):681-690.
[45] Sigal I A, Flanagan J G, Tertinegg I, et al. Reconstruction of human nerve heads for finite element modeling[J]. Technology and Health Care, 2005, 13:313-329.
[46] Sigal I A, Flanagan J G, Tertinegg I, et al. Modeling individu-al-specific human optic nerve head biomechanics. Part I:IOP-induced deformations and influence of geometry[J]. Bio-mechanics and Modeling in Mechanobiology, 2009, 8:85-98.
[47] Sigal I A, Flanagan J G, Tertinegg I, et al. Modeling individu-al-specific human optic nerve head biomechanics. Part Ⅱ:in-fluence of material properties[J]. Biomechanics and Modeling in Mechanobiology, 2009, 8:99-109.
[48] Sigal I A, Grimm J L, Jan N J, et al. Eye-specific IOP-in-duced displacements and deformations of human lamina cribrosa[J]. Investigative Ophthalmology & Visual Science, 2014, 55:1-15.
[49] Qiu J F, Qian X Q, Cui Q Q, et al. Three-dimensional recon-struction and finite element modeling analysis of the rabbit optic nerve head in acute high intraocular pressure[J]. Japa-nese Journal of Applied Physics, 2012, 51:067001, doi:10.1143/JJAP.51.067001.
[50] 邱建峰. 青光眼高眼压下的视神经乳头三维重建与仿真分析[D]. 北京:首都医科大学生物医学工程学院, 2012. Qiu Jianfeng. The 3d reconstruction and finite element analysis of optic nerve head in high intraocular pressure in glaucoma[D]. Beijing:School of Biomedical Engineering, Capital Medical University, 2012.
[51] 祁昕征, 魏超, 杨佳燕, 等. 三维有限元模型力学分析可预测视乳头的形状变化[J]. 中国组织工程研究, 2013, 17(50):8712-8718. Qi Xinzheng, Wei Chao, Yang Jiayan, et al. Shape variation of optic nerve head by mechanical analysis using three-dimensional finite element model[J]. Chinese Journal of Tissue Engineering Research, 2013, 17(50):8712-8718.
[52] Qian X Q, Zhang K Y, Liu Z C. A method to determine the mechanical properties of the retina based on an experiment in vivo[J]. Bio-Medical Materials and Engineering, 2015, 26(Sup-pl1):S287-S297.
[53] Spoerl E, Boehm A G, Pillunat L E. The influence of various substances on the biomechanical behavior of lamina cribrosa and peripapillary sclera[J]. Investigative Ophthalmology & Vi-sual Science, 2005, 46:1286-1290.
[54] Albon J, Purslow P P, Karwatowski W S S, et al. Age related compliance of the lamina cribrosa in human eyes[J]. British Journal of Ophthalmology, 2000, 84:318-323.
[55] Braunsmann C, Hammer C M, Rheinlaender J, et al. Evalua-tion of lamina cribrosa and peripapillary sclera stiffness in pseudoexfoliation and normal eyes by atomic force microscopy[J]. Investigative Ophthalmology & Visual Science, 2012, 53:2960-2967.
[56] Ben-shlomo G, Bakalash S, Lambrou G N, et al. Pattern elec-troretinography in a rat model of ocular hypertension:Func-tional evidence for early detection of inner retinal damage[J]. Experimental Eye Research, 2005, 81(3):340-349.
[57] Suzuki R, Oka T, Tamada Y, et al. Degeneration and dys function of retinal neuronsin acute ocular hypertensive rats:Involvement of calpains[J]. Journal of Ocular Pharmacology and Therapeutics, 2014, 30(5):419-428.
[58] Guo X Q, Tian B, Liu Z C, et al. A new rat model of glauco-ma induced by intracameral injection of silicone oil and elec-trocoagulation of limbal vessels[J]. Chinese Medical Journal, 2011, 124(2):309-314.
[59] 郭学谦. 慢性高眼压对大鼠视网膜和视神经损伤的在体实验研究[D]. 北京:首都医科大学生物医学工程学院, 2010. Guo Xueqian. Experimental study on the damage of retina and optical nerves in rat with chronic elevated intraocular pressure[D]. Beijing:School of Biomedical Engineering, Capital Medical University, 2010.
[60] 陈伯君, 赵明, 田蓓, 等. 小波分析在大鼠闪光视觉诱发电位特征提取中的应用[J]. 中国组织工程研究与临床康复, 2009, 13(22):4287-4290. Chen Bojun, Zhao Ming, Tian Bei, et al. Application of wavelet analysis in the feature extraction of rat flash visual evoked potential[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2009, 13(22):4287-4290.
[61] 郭学谦, 田蓓, 孙世杰, 等. 高眼压对青光眼视网膜功能的影响[J]. 医用生物力学, 2010, 25(3):195-199. Guo Xueqian, Tian Bei, Sun Shijie, et al. Effect of ocular hypertension on the function of retina of glaucoma[J]. Journal of medical biomechanics, 2010, 25(3):195-199.
[62] 谢楠, 郭学谦, 田蓓, 等. 闪光视网膜电图时域、频域联合分析评价慢性高眼压模型大鼠的视网膜功能[J]. 中国组织工程研究与临床康复, 2009, 13(22):4281-4286. Xie Nan, Guo Xueqian, Tian Bei, et al. Combined analysis method of flash electroretinogram in domains of time and frequency to evaluate retinal functions of chronic ocular hypertension rat models[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2009, 13(22):4281-4286.
[63] 马丽萍, 刘浏, 郭学谦, 等. 急性高眼压作用下视神经轴浆运输与视网膜光学功能的关系[J]. 中国医学物理学, 2017, 34(10):1035-1040. Ma Liping, Liu Liu, Guo Xueqian, et al. Relationship between the axonal transport of the optic nerve and the optical function of the retina in acute high intraocular pressure[J]. Chinese Journal of Medical Physics, 2017, 34(10):1035-1040.
文章导航

/