专题论文

近视巩膜生物力学研究进展

  • 周清怡 ,
  • 赵斐 ,
  • 周翔天
展开
  • 温州医科大学附属眼视光医院, 温州 325027
周清怡,博士研究生,研究方向为近视发病机制,电子信箱:Sophiee1228@live.com

收稿日期: 2018-05-08

  修回日期: 2018-06-11

  网络出版日期: 2018-07-23

基金资助

浙江省自然科学基金项目(LQ16H120006);国家自然科学基金项目(81700868,81670886)

Research advances in scleral biomechanics in myopia progression

  • ZHOU Qingyi ,
  • ZHAO Fei ,
  • ZHOU Xiangtian
Expand
  • Eye Hospital of Wenzhou Medical University, Wenzhou 325027, China

Received date: 2018-05-08

  Revised date: 2018-06-11

  Online published: 2018-07-23

摘要

近视是一种最为常见的具有致盲可能性的眼部疾患,其发病机制目前尚不完全明晰。巩膜可直接决定眼轴的长度,是近视形成的最终效应器。本文以巩膜为切入点,综述近视发生时巩膜组织生物力学性质的变化、相应巩膜组织成分的改变与原因,以及目前临床上针对性的近视治疗方案,展望了该研究领域的发展方向和趋势。

本文引用格式

周清怡 , 赵斐 , 周翔天 . 近视巩膜生物力学研究进展[J]. 科技导报, 2018 , 36(13) : 39 -43 . DOI: 10.3981/j.issn.1000-7857.2018.13.005

Abstract

The increased prevalence of myopia and its potentially irreversible vison impairment have caused widespread concern, but the detailed pathogenesis of this disease needs further investigation. Experimental and clinical evidences indicate that excessive ocular elongation associated with myopia is the result of altered scleral shell. This review summarizes the research advances in scleral biomechanics in myopia progression, including biomechanical properties of the sclera in myopic eyes, the related changes and reasons of the composition of the scleral extracellular matrix, and some new clinical treatments. Future research direction and trend in this field are prospected as well.

参考文献

[1] Ian G M, Amanda N F, Regan S A, et al. The epidemics of my-opia:A etiology and prevention[J]. Progress in Retinal and Eye Research, 2018, 62:134-149.
[2] Janowski M, Bulte J W M, Handa J T, et al. Concise review:Using stem cells to prevent the progression of myopia-A con-cept[J]. Stem Cells, 2015, 33(7):2104-2113.
[3] Girard M J, Suh J K, Bottlang M, et al. Biomechanical changes in the sclera of monkey eyes exposed to chronic IOP elevations[J]. Investigative Ophthalmology and Vison Science, 2011, 52(8):5656-5669.
[4] Fazio M A, Grytz R, Bruno L, et al. Regional variations in me-chanical strain in the posterior human sclera[J]. Investigative Ophthalmology and Vison Science, 2012, 53(9):5326-5333.
[5] Fazio M A, Grytz R, Morris J S, et al. Age-related changes in human peripapillary scleral strain[J]. Biomechanics and Model-ing in Mechanobiology, 2014, 13(3):551-563.
[6] McBrien N A, Jobling A I, Gentle A. Biomechanics of the sclera in myopia:Extracellular and cellular factors[J]. Optome-try and Vision Science, 2009, 86(1):E23-E30.
[7] Lewis J A, Garcia M B, Rani L, et al. Intact globe inflation test-ing of changes in scleral mechanics in myopia and recovery[J]. Experimental Rye Research, 2014, 127(10):42-48.
[8] Fazio M A, Grytz R, Morris J S, et al. Human scleral structural stiffness increases more rapidly with age in donors of African descent compared to donors of European descent[J]. Investiga-tive Ophthalmology and Vison Science, 2014, 55(11):7189-7198.
[9] Curtin B J. Physiopathologic aspects of scleral stress-strain[J]. Transactions of the American Ophthalmological Society, 1969, 67:417-461.
[10] Phillips J R, McBrien N A. Form deprivation myopia:Elastic properties of sclera[J]. Ophthalmic Optometry and Physiologi-cal Optics, 1995, 15(5):357-362.
[11] Barathi V A, Beuerman R W. Molecular mechanisms of mus-carinic receptors in mouse scleral fibroblasts:prior to and af-ter induction of experimental myopia with atropine treatment[J]. Molecular Vision, 2011, 17:680-692.
[12] Curtin B J, Teng C C. Scleral changes in pathological myopia[J]. Transactions of the American Academic ophthalmology and Otolaryngology, 1958, 62(6):777-790.
[13] Gentle A, Liu Y, Martin J E, et al. Collagen gene expression and the altered accumulation of scleral collagen during the development of high myopia[J]. Journal of Biological Chemis-try, 2003, 278(19):16587-16594.
[14] Funata M, Tokoro T. Scleral change in experimentally myopic monkeys[J]. Graefes Archives for Clinical and Experimental Ophthalmology, 1990, 228(2):174-179.
[15] Chen M, Qian Y, Dai J, et al. The sonic hedgehog signaling pathway induces myopic development by activating matrix me-talloproteinase (MMP)-2 in Guinea pigs[J]. PLoS One, 2014, 9(5):e96952.
[16] Qian L, Zhao H, Li X, et al. Pirenzepine inhibits myopia in guinea pig model by regulating the balance of MMP-2 and TIMP-2 expression and increased tyrosine hydroxylase levels[J]. Cell Biochemistry and Biophysic, 2015, 71(3):1373-1378.
[17] Siegwart J T, Norton T T. Selective regulation of MMP and TIMP mRNA levels in tree shrew sclera during minus lens compensation and recovery[J]. Investigative Ophthalmology and Visual Science, 2005, 46(10):3484-3492.
[18] Frost M R, Norton T T. Alterations in protein expression in tree shrew sclera during development of lens-induced myopia and recovery[J]. Invetigative Ophthalmology and Visual Sci-ence, 2012, 53(1):322-336.
[19] Liu H H, Gentle A, Jobling A I, et al. Inhibition of matrix me-talloproteinase activity in the chick sclera and its effect on myopia development[J]. Investigative Ophthalmology and Visu-al Science, 2010, 51(6):2865-2871.
[20] Zhao F, Zhou Q, Reinach P S, et al. Cause and effect relation-ship between changes in scleral matrix metallopeptidase-2 ex-pression and myopia development in mice[J]. The American Journal of Pathology, 2018.
[21] Rada J A, Perry C A, Slover M L, et al. Gelatinase A and TIMP-2 expression in the fibrous sclera of myopic and recov-ering chick eyes[J]. Investigative Ophthalmology and Visual Science, 1999, 40(13):3091-3099.
[22] Bagalad B, Kumar K M, Puneeth H K. Myofibroblasts:Master of disguise[J]. Journal of Oral and Maxillofacial Pathology, 2017, 21(3):462-463.
[23] Backhouse S, Phillips J R. Effect of induced myopia on scler-al myofibroblasts and in vivo ocular biomechanical compli-ance in the guinea pig[J]. Investigative Ophthalmology and Vi-son Science, 2010, 51(12):6162-6171.
[24] Kollmannsberger P, Bidan C M, Dunlop J W C, et al. Tensile forces drive a reversible fibroblast-to-myofibroblast transition during tissue growth in engineered clefts[J]. Science Advanc-es, 2018, 4(1):eaao4881.
[25] McBrien N A, Metlapally R, Jobling A I, et al. Expression of collagen-binding integrin receptors in the mammalian sclera and their regulation during the development of myopia[J]. In-vestigative Ophthalmology and Visual Science, 2006, 47(11):4674-4682.
[26] Schulz J N, Plomann M, Sengle G, et al. New developments on skin fibrosis-essential signals emanating from the extracel-lular matrix for the control of myofibroblasts[J]. Matrix Biolo-gy, 2018, pii:S0945-053X(17)30479-1.
[27] Liu T X, Wang Z. Biomechanics of sclera crosslinked using genipin in rabbit[J]. International Journal of Ophthalmology, 2017, 10(3):355-360.
[28] Wollensak G, Iomdina E. Long-term biomechanical proper-ties after collagen crosslinking of sclera using glyceraldehyde[J]. Acta Ophthalmologica, 2008, 86(8):887-893.
[29] Wong F F, Lari D R, Schultz D S, et al. Whole globe infla-tion testing of exogenously crosslinked sclera using genipin and methylglyoxal[J]. Experimental Eye Research, 2012, 103(4):17-21.
[30] Tian Z, Wu K, Liu W, et al. Two-dimensional infrared spec-troscopic study on the thermally induced structural changes of glutaraldehyde-crosslinked collagen[J]. Spectrochimica Ac-ta, 2015, 140:356-363.
文章导航

/