综述

废弃荧光灯处置技术研究进展

  • 李鹏辉 ,
  • 邹晓燕 ,
  • 张洪武
展开
  • 1. 中国科学院城市环境研究所, 厦门 361021;
    2. 中国科学院大学, 北京 100049
李鹏辉,博士,研究方向为固体废弃物资源化,电子信箱:phli@iue.ac.cn

收稿日期: 2017-11-24

  修回日期: 2018-04-26

  网络出版日期: 2018-07-23

基金资助

环保公益性行业科研专项(201509054)

Review on disposal technology of spent fluorescent lamps

  • LI Penghui ,
  • ZOU Xiaoyan ,
  • ZHANG Hongwu
Expand
  • 1. Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2017-11-24

  Revised date: 2018-04-26

  Online published: 2018-07-23

摘要

汞是对人体毒害最大的5种重金属之一,由废弃荧光灯引起的汞污染问题日益严重。目前,国内外废弃荧光灯的处理方式以填埋和焚烧法为主,这两种处理方式都对周围环境和人类健康造成巨大的潜在威胁。此外,废弃荧光灯含有稀土元素以及铜、铅、汞等可重复利用的二次资源。本文总结了国内外废弃荧光灯的主要处置技术及存在的优缺点,着重阐述了废弃荧光灯管资源化、汞的无害化以及从废弃荧光灯中回收稀土金属的方法。分析表明,采用回收利用法,利用新型的纳米材料(如纳米硒等)对汞进行无害化处理、绿色环保的稀土回收方法在未来具有良好的发展前景。

本文引用格式

李鹏辉 , 邹晓燕 , 张洪武 . 废弃荧光灯处置技术研究进展[J]. 科技导报, 2018 , 36(13) : 50 -57 . DOI: 10.3981/j.issn.1000-7857.2018.13.007

Abstract

Mercury is one of the most toxic heavy metals to human beings. Meanwhile, mercury pollution which is triggered by waste fluorescent lamps widely used in our daily life is becoming a more and more serious problem. In recent years, landfill and incineration have been the main disposal methods for waste fluorescent lamps at home and abroad, posing a huge potential threat to the surrounding environment and human health. On the other hand, fluorescent lamps contain large amounts of reusable secondary resources, such as rare earth elements, copper and lead. Therefore, this review summarizes the major disposal technologies of waste fluorescent lamps at home and abroad, as well as their advantages and disadvantages, focusing on the recycling of waste fluorescent lamps, harmless disposal of mercury, and recovery methods of rare earth metals from waste fluorescent lamps. Finally, the article indicates that the recycling method, new type of nanomaterials (such as nano-selenium, etc.) for harmless treatment of mercury, and environment friendly recovery methods of rare earth all have good prospects in the future.

参考文献

[1] 陈大华. 绿色照明与环境保护[J]. 灯与照明, 2002, 26(6):1-3. Chen Dahua. Health protecting lighting and environmental protection[J]. Light & Lighting, 2002, 26(6):1-3.
[2] 谭全银. 废荧光灯中稀土元素机械活化强化浸出机理及工艺研究[D]. 北京:清华大学, 2016. Tan Quanyin. Study on mechanism and process of mechanical activation enhanced leaching of rare earth elements from waste fluorescent lamp[D]. Beijing:Tsinghua University, 2016.
[3] 陈莎, 张嘉兴, Kim Junbeum. 基于生命周期的中国荧光灯的环境影响分析[J]. 环境工程学报, 2017, 11(7):4285-4292. Chen Sha, Zhang Jiaxing, Kim Junbeum. Environmental impacts of fluorescent lamps in mainland China based on life cycle assessment[J]. Chinese Journal of Environmental Engineering, 2017, 11(7):4285-4292.
[4] Chen S, Zhang J, Kim J. Life cycle analysis of greenhouse gas emissions for fluorescent lamps in mainland China[J]. Science of The Total Environment, 2017, 575:467-473.
[5] 叶欣, 王卓, 陈吟. 2011年我国气体放电光源生产及国内外市场情况分析[J]. 中国照明电器, 2013(12):1-5. Ye Xin, Wang Zhuo, Chen Yin. Situation of discharge lamp production and market in 2011[J]. China Light & Lighting 2013(12):1-5.
[6] Fujisjiro F, Baba M, Yamamori S. Fluorescent lamp, fluores-cent lamp unit, liquid crystal display device, and method of emitting light:U.S. 6917354[P]. 2005-7-12.
[7] 王敬贤, 郑骥. 含汞废弃荧光灯管处理现状及分析[J]. 中国环保产业, 2010(10):37-41. Wang Jingxian, Zheng Ji. Current situation and analysis of mercury-containing waste fluorescent lamp[J]. China Environmental Protection Industry, 2010(10):37-41.
[8] Alammari R, Islam M S, Chowdhury N A, et al. Impact on pow-er quality due to large-scale adoption of compact fluorescent lamps-a review[J]. International Journal of Ambient Energy, 2017, 38(4):435-442.
[9] Rhee S W. Estimation on separation efficiency of aluminum from base-cap of spent fluorescent lamp in hammer crusher unit[J]. Waste Management, 2017, 67:259-264.
[10] Hobohm J, Krüger O, Basu S, et al. Recycling oriented com-parison of mercury distribution in new and spent fluorescent lamps and their potential risk[J]. Chemosphere, 2017, 169:618-626.
[11] Peng L, Wang Y, Chang C T. Recycling research on spent flu-orescent lamps on the basis of extended producer responsibili-ty in China[J]. Journal of the Air & Waste Management Asso-ciation, 2014, 64(11):1299-1308.
[12] Singhvi R, Taneja A, Patel J R, et al. Determination of total metallic mercury in compact fluorescent lamps (CFLs)[J]. En-vironmental Forensics, 2011, 12(2):143-148.
[13] 齐伍凯, 孙艳辉, 南俊民. 废弃荧光灯的回收处理方法及对策[J]. 环境污染与防治, 2009, 31(9):95-98. Qi Wukai, Sun Yanhui, Nan Junmin. Progress in recycle and treatment of the spent fluorescent lamps[J]. Environmental Pollution and Control, 2009, 31(9):95-98.
[14] Tan Q, Li J, Zeng X. Rare earth elements recovery from waste fluorescent lamps:A review[J]. Critical Reviews in Environ-mental Science and Technology, 2015, 45(7):749-776.
[15] Meyer L, Bras B. Rare earth metal recycling[C]//Sustainable Systems and Technology (ISSST), 2011 IEEE International Symposium on Sustainable Systems and Technolgy, Chicago IEEE, 2011, 125(3):1-6.
[16] De Michelis I, Ferelia F, Varelli E F, et al. Treatment of ex-haust fluorescent lamps to recover yttrium:Experimental and process analyses[J]. Waste Management, 2011, 31(12):2559-2568.
[17] 龙志奇, 王良士, 黄小卫, 等. 磷矿中微量稀土提取技术研究进展[J]. 稀有金属, 2009(3):434-441. Long Zhiqi, Wang Liangshi, Huang Xiaowei, et al. Progress in extraction technique for trace rare earths from phosphorite[J]. Chinese Journal of Rare Metals, 2009(3):434-441.
[18] Binnemans K, Jones P T. Perspectives for the recovery of rare earths from end-of-life fluorescent lamps[J]. Journal of Rare Earths, 2014, 32(3):195-200.
[19] 王涛. 废旧荧光灯的回收利用及处理处置[J]. 中国环保产业, 2005(3):26-28. Wang Tao. Recycle and treatment of fluorescent lamp[J]. China Environmental Protection Industry, 2005(3):26-28.
[20] 高敏, 王斌, 苑文仪, 等. 废弃含汞灯具中荧光粉分析及汞处理[J]. 安全与环境工程, 2016, 23(5):80-84. Gao Min, Wang Bin, Yuan Wenyi, et al. Analysis of phosphor powder and removal of mercury from waste mercury-containing lamps[J]. Safety and Environmental Engineering, 2016, 23(5):80-84.
[21] Binnemans K, Jones P T, Blanpain B, et al. Recycling of rare earths:A critical review[J]. Journal of Cleaner Production, 2013, 5(1):1-22.
[22] 梅光军, 解科峰, 李刚, 等. 废弃荧光灯无害化、资源化处置研究进展[J]. 再生资源与循环经济, 2007(6):1-6. Mei Guangjun, Xie Kefeng, Li Gang, et al. Progress in study on spent fluorescent lamps' harmless disposal and resource utilization[J]. Recycling Research, 2007(6):1-6.
[23] 李厚铭, 李学军, 张福铭, 等. 国外油田钻井废弃物回注处理技术进展[J]. 科学技术与工程, 2012, 12(28):7318-7325. Li Houming, Li Xuejun, Zhang Fuming, et al. Application status of cutting injection for drilling waste treatment at abroad[J]. Science Technology and Engineering, 2012, 12(28):7318-7325.
[24] 郑昀. 北京市废旧荧光灯管回收现状与综合利用对策[J]. 环境与发展, 2010, 22(2):24-27. Zheng Jun. Current recycling situation and the countermeasures to use of the old fluorescent tube in beijing[J]. Inner Mongolia Environmental Sciences, 2010, 22(2):24-27.
[25] 程鹏, 周斌. 废旧灯管回收处理的法制和设施建设[J]. 江苏环境科技, 2005, 18(增刊1):173-175. Cheng Peng, Zhou Bin. Facilities and legal system construction about recovery processing of waste fluorescent lamp[J]. Jiangsu Environmental Science and Technology, 2005, 18(Suppl 1):173-175.
[26] Zhang J, Chen S. The analysis of spent fluorescent lamps for disposal in China[J]. Sustainable Development. 2016, 6(2):103-109.
[27] 汪晖. 废旧荧光灯回收处理系统概述[J]. 中国照明电器, 2012(7):21-23. Wang Hui. Outline of waste fluorescent lamp recycling system[J]. China Light & Lighting, 2012(7):21-23.
[28] Massari S, Ruberti M. Rare earth elements as critical raw ma-terials:Focus on international markets and future strategies[J]. Resources Policy, 2013, 38(1):36-43.
[29] Chen G H, Chen W Y, Yen Y C, et al. Detection of mercury (Ⅱ) ions using colorimetric gold nanoparticles on paper-based analytical devices[J]. Analytical Chemistry, 2014, 86(14):6843-6849.
[30] Singhvi R, Turpin R, Kalnicky D J, et al. Comparison of field and laboratory methods for monitoring metallic mercury vapor in indoor air[J]. Journal of Hazardous Materials, 2001, 83(1-2):1-10.
[31] Raposo C, Roeser H M. Contamination of the environment by the current disposal methods of mercury-containing lamps in the state of Minas Gerais, Brazil[J]. Waste Management, 2001, 21(7):661-670.
[32] Rey-Raap N, Gallardo A. Removal of mercury bonded in re-sidual glass from spent fluorescent lamps[J]. Journal of Envi-ronmental Management, 2013, 115:175-178.
[33] Coskun S, Civelekoglu G. Recovery of mercury from spent flu-orescent lamps via oxidative leaching and cementation[J]. Wa-ter, Air & Soil Pollution, 2015, 226(6):1-13.
[34] Jang M, Hong S M, Park J K. Characterization and recovery of mercury from spent fluorescent lamps[J]. Waste Manage-ment, 2005, 25(1):5-14.
[35] Durão W A, De Castro C A, Windmöller C C. Mercury reduc-tion studies to facilitate the thermal decontamination of phos-phor powder residues from spent fluorescent lamps[J]. Waste Management, 2008, 28(11):2311-2319.
[36] Korpiel J A, Vidic R D. Effect of sulfur impregnation method on activated carbon uptake of gas-phase mercury[J]. Environ-mental Science & Technology, 1997, 31(8):2319-2325.
[37] Hsi H C, Rood M J, Rostam A M, et al. Effects of sulfur im-pregnation temperature on the properties and mercury adsorp-tion capacities of activated carbon fibers (ACFs)[J]. Environ-mental Science & Technology, 2001, 35(13):2785-2791.
[38] Li Y, Lee C, Gullett B. Importance of activated carbon's oxy-gen surface functional groups on elemental mercury adsorption[J]. Fuel, 2003, 82(4):451-457.
[39] Manchester S, Wang X, Kulaots I, et al. High capacity mercu-ry adsorption on freshly ozone-treated carbon surfaces[J]. Car-bon, 2008, 46(3):518-524.
[40] Johnson N C, Manchester S, Sarin L, et al. Mercury vapor re-lease from broken compact fluorescent lamps and in situ cap-ture by new nanomaterial sorbents[J]. Environmental Science & Technology, 2008, 42(15):5772-5778.
[41] Innocrnzi V, De Michelis I, Kopacek B, et al. Yttrium recov-ery from primary and secondary sources:A review of main hy-drometallurgical processes[J]. Waste Management, 2014, 34(7):1237-1250.
[42] Hirajima T, Sasaki K, Bissombolo A, et al. Feasibility of an ef-ficient recovery of rare earth-activated phosphors from waste fluorescent lamps through dense-medium centrifugation[J]. Separation and Purification Technology, 2005, 44(3):197-204.
[43] HIrajima T, Bissombolo A, Sasaki k, et al. Floatability of rare earth phosphors from waste fluorescent lamps[J]. International Journal of Mineral Processing, 2005, 77(4):187-198.
[44] Otsuki A, Guangjun M, Jiang Y, et al. Solid-solid separation of fluorescent powders by liquid-liquid extraction using aque-ous and organic phases[J]. Resources Processing, 2006, 53(3):121-133.
[45] Zhang S G, Yang M, Liu H, et al. Recovery of waste rare earth fluorescent powders by two steps acid leaching[J]. Rare Metals, 2013, 32(6):609-615.
[46] 杨幼明. 从荧光粉废料中提取稀土工艺研究[J]. 有色金属(冶炼部分), 2012(10):23-26. Yang Youming. Technical study on rare earth recovery from fluorescent powder scrap[J]. Nonferrous Metals (Extractive Metallurgy), 2012(10):23-26.
[47] 李洪枚. 从废稀土荧光粉中酸浸回收稀土的研究[J]. 稀有金属, 2010, 34(6):110-116. Li Hongmei. Recovery of rare earths from phosphor sludge by acid leaching[J]. Chinese Journal of Rare Metals, 2010, 34(6):110-116.
[48] 解科峰. 废弃荧光灯无害化、资源化回收处理研究[D]. 武汉:武汉理工大学, 2007. Xie Kefeng. Study on spent fluoreseent lamps harmless disposal and resource utilizotion[D]. Wuhan:Wuhan University of Technology, 2007.
[49] Wu Y, Wang B, Zhang Q, et al. Recovery of rare earth ele-ments from waste fluorescent phosphors:Na2O2 molten salt de-composition[J]. Journal of Material Cycles and Waste Manage-ment, 2014, 16(4):635-641.
[50] 杨剑, 曹建明. 一种从荧光粉废料中回收高纯度钇铕的制备方法:中国, 201010520143.7[P]. 2010-10-26. Yang Jian, Cao Jianming. Preparation method for recovering high-purity yttrium europium from fluorescent powder scrap:China, 201010520143.7[P]. 2010-10-26.
[51] Rabah M A. Recyclables recovery of europium and yttrium metals and some salts from spent fluorescent lamps[J]. Waste Management, 2008, 28(2):318-325.
[52] Tan Q, Deng C, Li J. Innovative application of mechanical ac-tivation for rare earth elements recovering:process optimiza-tion and mechanism exploration[J]. Scientific Reports, 2016, 6(19961):1-10.
[53] Shimizu R, Sawada K, Enokida Y, et al. Supercritical fluid ex-traction of rare earth elements from luminescent material in waste fluorescent lamps[J]. The Journal of Supercritical Flu-ids, 2005, 33(3):235-241.
[54] Tan Q, Li J. A study of waste fluorescent lamp generation in mainland China[J]. Journal of Cleaner Production, 2014, 81:227-233.
[55] Dupont D, Binnemans K. Rare-earth recycling using a func-tionalized ionic liquid for the selective dissolution and revalo-rization of Y2O3:Eu3+ from lamp phosphor waste[J]. Green Chemistry, 2015, 17(2):856-868.
文章导航

/