研究论文

高丹草及其亲本种子胚差异蛋白质组学分析

  • 薛春雷 ,
  • 逯晓萍 ,
  • 韩平安 ,
  • 张坤明 ,
  • 张瑞霞 ,
  • 董婧
展开
  • 1. 内蒙古农业大学农学院, 呼和浩特 010019;
    2. 内蒙古农牧业科学院生物研究中心, 呼和浩特 010020;
    3. 呼和浩特市种子管理站, 呼和浩特 010019
薛春雷,博士研究生,研究方向为作物遗传育种,电子信箱:xcl13474717283@163.com

收稿日期: 2017-11-01

  修回日期: 2018-04-26

  网络出版日期: 2018-07-27

基金资助

国家自然科学基金项目(31160302,31460375);呼和浩特市科技计划项目(2012-重-计-8-2)

Differential proteomics analysis of the embryo in sorghum-sudangrass hybrid and its parents

  • XUE Chunlei ,
  • LU Xiaoping ,
  • HAN Pingan ,
  • ZHANG Kunming ,
  • ZHANG Ruixia ,
  • DONG Jing
Expand
  • 1. College of Agronomy, Inner Mongolia Agricultural University, Hohhot 010019, China;
    2. Biological Research Center, Inner Mongolia Academy of Agriculture and Animal Husbandry Science, Hohhot 010020, China;
    3. Hohhot Seed Management Station, Hohhot 010019, China

Received date: 2017-11-01

  Revised date: 2018-04-26

  Online published: 2018-07-27

摘要

高丹草是综合高粱和苏丹草双亲优良性状的一年生禾本科饲草,其杂种优势特别明显,但杂种优势形成机理还不明确。为了揭示高丹草杂种优势形成机理,本研究以杂种高丹草及其亲本的成熟胚为试材,利用Label free结合质谱技术,采用生物信息学分析方法在蛋白质组学水平进行研究。研究结果鉴定出差异蛋白124个,其中加性积累蛋白48个,占差异蛋白总数的38.71%,加性积累蛋白中上调蛋白19个,下调蛋白29个。鉴定出非加性积累蛋白为76个,占差异蛋白总数的61.29%,非加性积累蛋白的表达模式以超高亲表达所占比例最大(29个),其次是偏高亲表达模式(18个),偏低亲表达模式次之(14个),另外还有超低亲表达模式(10个),以及不属于该四种表达模式蛋白5个,因此,加性积累蛋白在高丹草成熟胚杂种优势形成上起主导作用。加性与非加性积累蛋白涉及多个功能组,主要是胁迫响应、碳水化合物代谢、转录调控、发育调控、信号转导、蛋白质代谢等功能类别。

本文引用格式

薛春雷 , 逯晓萍 , 韩平安 , 张坤明 , 张瑞霞 , 董婧 . 高丹草及其亲本种子胚差异蛋白质组学分析[J]. 科技导报, 2018 , 36(14) : 88 -98 . DOI: 10.3981/j.issn.1000-7857.2018.14.012

Abstract

Sorghum-sudangrass hybrids are annual gramineous forage crops with intergrated excellent parental traits. Their heterosis is particularly prominent, but the molecular mechanism of the heterosis is not yet very clear. To reveal the molecular mechanism, the mature embryos of sorghum-sudangrass hybrids and their parents are analyzed by the Label free mass spectrometry and the bioinformatics methods based on proteomics in this study. 124 differentially expressed proteins are identified, among which 48 are additive accumulation proteins, accounting for 38.71% of the total proteins. 19 and 29 of them are up-regulated proteins and down-regulated proteins, respectively. 76 of them are non-additive accumulation proteins, accounting for 61.29% of the total proteins. 29 proteins are of the above-high-parent expression, with the greatest proportion among the non-additive accumulation expression patterns. Followed by the high-parent expression patterns(18 proteins), the low-parent expression patterns (14 proteins), the below-low-parent expression patterns(10 proteins). Besides, there are 5 proteins which do not belong to the above four kinds of protein expression patterns. Therefore, non-additive proteins play especially dominant roles in the heterosis of the mature embryo of sorghum-sudangrass hybrids. Additive and non-additive accumulation proteins cover multiple functional groups, which involve the stress response, the carbohydrate metabolism, the transcriptional regulation, the development regulation, the signal transduction, the protein metabolism and others.

参考文献

[1] Lu X P, Yun J F, Gao C P, et al. Quantitative trait loci analysis of economically important traits in Sorghum bicolor S. sudanense hybrid[J]. Canadian Journal of Plant Science, 2011, 91(1):81-90.
[2] 韩平安, 逯晓萍, 王亚男, 等. 基于重组自交系群体的高丹草抗倒高产种质的筛选[J]. 中国草地学报, 2014, 36(5):51-57. Han Pingan, Lu Xiaoping, Wang Yanan, et al. Screening of the lodging-resistance and high-yielding germplasm of sorghum×sudan grass hybrid based on recombinant inbred line populations[J]. Acta Agrestia Sinica, 2014, 36(5):51-57.
[3] 于卓, 秦永梅, 赵晓杰, 等. 优良饲用作物新品种——蒙农青饲1号高丹草选育[J]. 中国草地, 2004(2):2-10. Yu Zhuo, Qin Yongmei, Zhao Xiaojie, et al. Breeding of forage crop-sorghum bicolor×sorghum sudanense cv. Mengnong Qingsi No.1[J]. Grassland of China, 2004(2):2-10.
[4] 于卓, 赵晓杰, 赵娜, 等. 蒙农青饲2号高丹草选育[J]. 草地学报, 2004, 12(3):176-182. Yu Zhuo, Zhao Xiaojie, Zhao Na, et al. Breeding of sorghum bicolor sorghum sudanense cv. Mengnong Qingsi No.2[J]. Acta Agrestia Sinica, 2004, 12(3):176-182.
[5] 于卓, 马艳红, 李小雷, 等. 蒙农3号高丹草选育[J]. 中国草地学报, 2008, 30(6):1-9 Yu Zhuo, Ma Yanhong, Li Xiaolei, et al. Breeding of sorghum bicolor×sorghum sudanense cv. Mengnong No.3[J]. Acta Agrestia Sinica, 2008, 30(6):1-9.
[6] 詹秋文, 钱章强. 高粱与苏丹草杂种优势利用的研究[J]. 作物学报, 2004, 30(1):73-77. Zhan Qiuwen, Qian Zhangqiang. Heterosis utilization of hybrid between Sorghum[Sorghum bicolor(L.) Moench] and Sudangrass[Sorghum sudanense(Piper)Stapf] [J]. Acta Agronomica Sinica, 2004, 30(1):73-77.
[7] 詹秋文, 林平, 钱章强. 皖草3号的选育及其特征特性[J]. 作物杂志, 2006(4):35-36. Zhan Qiuwen, Lin Ping, Qian Zhangqiang. Breeding and characteristics of Wan Grass No.3[J]. Crops, 2006(4):35-36.
[8] 薛春雷, 逯晓萍, 温莹, 等. 高丹草新品种GB-4-2选育研究[J]. 内蒙古农业科技, 2013(1):24-27. Xue Chunlei, Lu Xiaoping, Wen Ying, et al. Breeding of new sorghum bicolor×sorghum sudanense GB-4-2[J]. Inner Mongolia Agricultural Science and Technology, 2013(1):24-27.
[9] Panchaud A, Affolter M, Moreillon P, et al. Experimental and computational approaches to quantitative proteomics:Status quo and outlook[J]. Journal of Proteomics, 2008, 71(1):19-33.
[10] Domon B, Aebersold R. Mass spectrometry and protein analysis[J]. Science, 2006, 312(5771):212-217.
[11] Zhu W, Smith J W, Huang C M. Mass spectrometry-based label-free quantitative proteomics[J]. Journal of Biomedicine and Biotechnology, 2010, 2010(1):840518.
[12] Liu H, Sadygov R G, Yates J R. A model for random sampling and estimation of relative protein abundance in shotgun proteomics[J]. Analytical Chemistry, 2004, 76(14):4193-4201.
[13] Marcon C, Lamkemeyer T, Malik W A, et al. Heterosis-associated proteome analyses of maize (Zea mays L.) seminal roots by quantitative label-free LC-MS[J]. Journal of Proteomics, 2013, 93(19):295-302.
[14] Mohayeji M, Capriotti AL, Cavaliere C, et al. Heterosis profile of sunflower leaves:A label free proteomics approach[J]. Journal of Proteomics, 2014, 99(1):101-110.
[15] 进茜宁, 付志远, 丁冬, 等. 玉米杂交种先玉335及其亲本种子萌发过程中胚芽蛋白质组学分析[J]. 作物学报, 2011, 37(9):1689-1694. Jin Xining, Fu Zhiyuan, Ding Dong, et al. Proteomic analysis of plumule in seed germination for an elite hybrid pioneer 335 and its parental lines in maize[J]. Acta Agronomica Sinica, 2011, 37(9):1689-1694.
[16] Han B, Li C, Zhang L, et al. Novel royal jelly proteins identified by gel-based and gel-free proteomics[J]. Journal of Agricultural & Food Chemistry, 2011, 59(18):10346-10355.
[17] Elias J E, Gygi S P. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry[J]. Nature Methods, 2007, 4(3):207-214.
[18] Wang Z, Xue Z, Wang T. Differential analysis of proteomes and metabolomes reveals additively balanced networking for metabolism in maize heterosis[J]. Journal of Proteome Research, 2014, 13(9):3987-4001.
[19] Hoecker N, Lamkemeyer T, Sarholz B, et al. Analysis of nonadditive protein accumulation in young primary roots of a maize (Zea mays L.) F(1)-hybrid compared to its parental inbred lines[J]. Proteomics, 2008, 8(18):3882.
[20] Duressa D, Soliman K M, Chen D, et al. Gene expression profiling in soybean under aluminum stress:Genes differentially expressed between Al-tolerant and Al-sensitive genotypes[J]. American Journal of Molecular Biology, 2011, 1(3):156-173.
[21] 刘洋, 邢鑫, 李德全. LEA蛋白的分类与功能研究进展[J]. 生物技术通报, 2011(8):36-43. Liu Yang, Xing Xin, Li Dequan. Studies on the classification and function of LFA Proteins[J]. Biotechnology Bulletin, 2011(8):36-43.
[22] 章成, 史冬燕, 曾黎琼, 等. 真核生物转录调控的研究进展[J]. 云南农业大学学报, 2007, 22(2):164-171. Zhang Cheng, Shi Dongyan, Zeng Liqion, et al. Research progress in gene transcription regulation in eukaryota[J]. Journal of Yunnan Agricultural University, 2007, 22(2):164-171.
[23] Baud S, Dichow N R, Kelemen Z, et al. Regulation of HSD1 in seeds of Arabidopsis thaliana[J]. Plant Cell Physiology, 2009, 50(8):1463-1478.
[24] 王艳, 柴宝峰, 梁爱华. 肽链释放因子识别终止密码子的机制[J]. 中国生物化学与分子生物学报, 2010, 26(1):22-29. Wang Yan, Chai Baofeng, Liang Aihua. Stop codon recognition mechanism of the polypeptide release factors[J]. Chinese Journal of Biochemistry Molecular Biology, 2010, 26(1):22-29.
[25] Dong M, Gu J, Zhang L, et al. Comparative proteomics analysis of superior and inferior spikelets in hybrid rice during grain filling and response of inferior spikelets to drought stress using isobaric tags for relative and absolute quantification[J]. Journal of Proteomics, 2014, 109:382-399.
文章导航

/