[1] 周兆英, 叶雄英, 崔天宏, 等. 微米纳米技术及微型机电系统[J]. 光学精密工程, 1998, 6(1):1-7. Zhou Zhaoying, Ye Xiongying, Cui Tianhong, et al. Microtechnology/nanotechnology and MEMS[J]. Optics and Precision Engineering, 1998, 6(1):1-7.
[2] Wang J. Can man-made nanomachines compete with nature biomotors[J]. ACS Nano, 2009, 3(1):4-9.
[3] 王志松. 能干的小引擎——纳米马达[J]. 自然杂志, 2006, 28(3):160-163. Wang Zhisong. A little engine that could:an introduction to nano-motors[J]. Chinese Journal of Nature, 2006, 28(3):160-163.
[4] 李天龙. 微纳马达的制备及驱动控制方法研究[D]. 哈尔滨:哈尔滨工业大学, 2016:9-12. Li Tianlong. Fabrication and locomotion control of micro-/nanomotor[D]. Harbin:Harbin Institute of Technology, 2016:9-12.
[5] 许太林. 超声控制与驱动微纳米马达[D]. 北京:北京科技大学, 2017:2-3. Xu Tailin. Ultrasound contro and propel micro/nanomachine[D]. Beijing:University of Science and Technology, 2017:2-3.
[6] van den Heuvel M G L, Dekker C. Motor proteins at work for nanotechnology[J]. Science, 2007, 317(5836):333-336.
[7] Sherman W B, Seeman N C. A precisely controlled DNA biped walking device[J]. Nano Letters, 2004, 4(7):1203-1207.
[8] Hurst S J, Payne E K, Qin L D, et al. Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods[J]. Angewandte Chemie International Edition, 2006, 45(17):2672-2692.
[9] Paxton W F, Kistler K C, Olmeda C C, et al. Catalytic nanomotors:autonomous movement of striped nanorods[J]. Journal of the American Chemical Society, 2004, 126(41):13424-13431.
[10] Gao W, Sattayasamitsathit S, Orozco J, et al. Highly efficient catalytic microengines:Template electrosynthesis of polyaniline/platinum microtubes[J]. Journal of the American Chemical Society, 2011, 133(31):11862-11864.
[11] Mei Y F, Solovev A A, Sanchez S, et al. Rolled-up nanotech on polymers:from basic perception to self-propelled catalytic microengines[J]. Chemical Society Reviews, 2011, 40(5):2109-2119.
[12] Decher G. Fuzzy nanoassemblies:Toward layered polymeric multicomposites[J]. Science, 1997, 277(5330):1232-1237.
[13] Kim S, Qiu F M, Kim S, et al. Fabrication and characterization of magnetic microrobots for three-dimensional cell culture and targeted transportation[J]. Advanced Materials, 2013, 25(41):5863-5868.
[14] Wu Y, Wu Z, Lin X, et al. Autonomous movement of controllable assembled Janus capsule motors[J]. ACS Nano, 2012, 6(12):10910-10916.
[15] Wu Z, Wu Y, He W, et al. Self-propelled polymer-based multilayer nanorockets for transportation and drug release[J]. Angewandte Chemie International Edition, 2013, 52(27):7000-7003.
[16] Tottori S, Zhang L, Qiu F M, et al. Magnetic helical micromachines:Fabrication, controlled swimming, and cargo transport[J]. Advanced Materials, 2012, 24(6):811-816.
[17] 吴笛. 物理气相沉积技术的研究进展与应用[J]. 机械工程与自动化, 2011(4):214-216. Wu Di. Application and development of physical vapor deposition technology[J]. Mechanical Engineering & Automation, 2011(4):214-216.
[18] 吴志光. 自驱动合成微纳米马达的仿生设计及其生物医学应用[D]. 哈尔滨:哈尔滨工业大学, 2015:3-8. Wu Zhiguang. Biomimetic design of self-propelled synthetic micro/nanomotors and their biomedical applications[D]. Harbin:Harbin Institute of Technology, 2015:3-8.
[19] Fan D L, Zhu F Q, Cammarata R C, et al. Electric tweezers[J]. Nano Today, 2011, 6(4):339-354.
[20] Loget G, Kuhn A. Electric field-induced chemical locomotion of conducting objects[J]. Nature Communications, 2011, 2(1):535.
[21] Grier D G. A revolution in optical manipulation[J]. Nature, 2003, 424(6950):810-816.
[22] Wu Z G, Si T Y, Gao W, et al. Superfast near-infrared lightdriven polymer multilayer rockets[J]. Small, 2016, 12(5):577-582.
[23] Xuan M, Wu Z, Shao J, et al. Near infrared light-powered janus mesoporous silica nanoparticle motors[J]. Journal of the American Chemical Society, 2016, 138(20):6492-6497.
[24] Mou F Z, Kong L, Chen C R, et al. Light-controlled propulsion, aggregation and separation of water-fuelled TiO2/Pt Janus submicromotors and their "on-the-fly" photocatalytic activities[J]. Nanoscale, 2016, 8(9):4976-4983.
[25] Chen C R, Mou F Z, Xu L L, et al. Light-steered isotropic semiconductor micromotors[J]. Advanced Materials, 2017, 29(3), doi:10.1002/adma.20160337
[26] Zhou D K, Li Y G C, Xu P T, et al. Visible-light controlled catalytic Cu2O-Au micromotors[J]. Nanoscale, 2017, 9(1):75-78.
[27] Wang W, Castro L A, Hoyos M, et al. Autonomous motion of metallic microrods propelled by ultrasound[J]. ACS Nano, 2012, 6(7):6122-6132.
[28] Xu T L, Soto F, Gao W, et al. Ultrasound-modulated bubble propulsion of chemically powered microengines[J]. Journal of the American Chemical Society, 2014, 136(24):8552-8555.
[29] Li T, Li J, Morozov K I, et al. Highly efficient freestyle magnetic nanoswimmer[J]. Nano Letters, 2017, 17(8):5092-5098.
[30] Li T, Zhang A, Shao G, et al. Janus microdimer surface walkers propelled by oscillating magnetic fields[J]. Advanced Functional Materials, 2018, doi:10.1002/adfm.201706066.
[31] Lin Z H, Fan X J, Sun M M, et al. Magnetically actuated peanut colloid motors for cell manipulation and patterning[J]. ACS Nano, 2018, 12(3):2539-2545.
[32] Zhang L, Abbott J J, Dong L X, et al. Characterizing the swimming properties of artificial bacterial flagella[J]. Nano Letters, 2009, 9(10):3663-3667.
[33] Li J X, Li T L, Xu T L, et al. Magneto-acoustic hybrid nanomotor[J]. Nano Letters, 2015, 15(7):4814-4821.
[34] Garcia-Gradilla V, Orozco J, Sattayasamitsathit S, et al. Functionalized ultrasound-propelled magnetically guided nanomotors:toward practical biomedical applications[J]. ACS Nano, 2013, 7(10):9232-9240.
[35] Karshalev E, Chen C R, Marolt G, et al. Utilizing iron's attractive chemical and magnetic properties in microrocket design, extended motion, and unique performance[J]. Small, 2017, 13(21), doi:10.1002/smll.201700035.
[36] Xu T L, Soto F, Gao W, et al. Reversible swarming and separation of self-propelled chemically powered nanomotors under acoustic fields[J]. Journal of the American Chemical Society, 2015, 137(6):2163-2166.
[37] Garcia-Gradilla V, Sattayasamitsathit S, Soto F, et al. Ultrasound-propelled nanoporous gold wire for efficient drug loading and release[J]. Small, 2014, 10(20):4154-4159.
[38] Gao W, Kagan D, Pak O S, et al. Cargo-towing fuel-free magnetic nanoswimmers for targeted drug delivery[J]. Small, 2012, 8(3):460-467.
[39] Wu Y J, Lin X K, Wu Z G, et al. Self-propelled polymer multilayer janus capsules for effective drug delivery and lighttriggered release[J]. ACS Applied Materials & Interfaces, 2014, 6(13):10476-10481.
[40] Tu Y F, Peng F, Andre A A M, et al. Biodegradable hybrid stomatocyte nanomotors for drug delivery[J]. ACS Nano, 2017, 11(2):1957-1963.
[41] Ma X, Zhao Y, Ng K W, et al. Integrated hollow mesoporous silica nanoparticles for target drug/siRNA co-delivery[J]. Chemistry-A European Journal, 2013, 19(46):15593-15603.
[42] Fan D L, Yin Z Z, Cheong R, et al. Subcellular-resolution delivery of a cytokine through precisely manipulated nanowires[J]. Nature Nanotechnology, 2010, 5(7):545-551.
[43] de Avila B E F, Angell C, Soto F, et al. Acoustically propelled nanomotors for intracellular siRNA delivery[J]. ACS Nano, 2016, 10(5):4997-5005.
[44] Wu J, Balasubramanian S, Kagan D, et al. Motion-based DNA detection using catalytic nanomotors[J]. Nature Communications, 2010, 1(4):36.
[45] Medina-Sanchez M, Schwarz L, Meyer A K, et al. Cellular cargo delivery:Toward assisted fertilization by sperm-carrying micromotors[J]. Nano Letters, 2016, 16(1):555-561.
[46] Wu Z, de Avila B E F, Martin A, et al. RBC micromotors carrying multiple cargos towards potential theranostic applications[J]. Nanoscale, 2015, 7(32):13680-13686.
[47] Balasubramanian S, Kagan D, Hu C M J, et al. Micromachine-enabled capture and isolation of cancer cells in complex media[J]. Angewandte Chemie International Edition, 2011, 50(18):4161-4164.
[48] Garcia-Gradilla V, Orozco J, Sattayasamitsathit S, et al. Functionalized ultrasound-propelled magnetically guided nanomotors:Toward practical biomedical applications[J]. ACS Nano, 2013, 7(10):9232-9240.
[49] Orozco J, Cortes A, Cheng G Z, et al. Molecularly imprinted polymer-based catalytic micromotors for selective protein transport[J]. Journal of the American Chemical Society, 2013, 135(14):5336-5339.
[50] Kiristi M, Singh V V, de Avila B E F, et al. Lysozyme-based antibacterial nanomotors[J]. ACS Nano, 2015, 9(9):9252-9259.
[51] Li T, Chang X, Wu Z, et al. Autonomous collision-free navigation of microvehicles in complex and dynamically changing environments[J]. ACS Nano, 2017, 11(9):9268-9275.
[52] Xi W, Solovev A A, Ananth A N, et al. Rolled-up magnetic microdrillers:Towards remotely controlled minimally invasive surgery[J]. Nanoscale, 2013, 5(4):1294-1297.
[53] Kagan D, Benchimol M J, Claussen J C, et al. Acoustic droplet vaporization and propulsion of perfluorocarbon-loaded microbullets for targeted tissue penetration and deformation[J]. Angewandte Chemie International Edition, 2012, 51(30):7519-7522.
[54] Hu C M J, Fang R H, Copp J, et al. A biomimetic nanosponge that absorbs pore-forming toxins[J]. Nature Nanotechnology, 2013, 8(5):336-340.
[55] Wu Z G, Li T L, Gao W, et al. Cell-membrane-coated synthetic nanomotors for effective biodetoxification[J]. Advanced Functional Materials, 2015, 25(25):3881-3887.
[56] Cheng R, Huang W J, Huang L J, et al. Acceleration of tissue plasminogen activator-mediated thrombolysis by magnetically powered nanomotors[J]. ACS Nano, 2014, 8(8):7746-7754.