[1] Voloshin S A, Kaprelyants A S. Cell-cell interactions in bacterial populations[J]. Biochemistry Biokhimiia, 2004, 69(11):1268-1275.
[2] Neurohr C, Behr J. Diagnosis and therapy of interstitial lung diseases[J]. Deutsche Medizinische Wochenschrift, 2009, 134(11):524-529.
[3] Erdmann J. Single-cell technologies highlight heterogeneity among cells[J]. Chemistry & Biology, 2012, 19(7):785-786.
[4] Marte B. Tumour heterogeneity[J]. Nature, 2013, 501(7467):327.
[5] Sweedler J V, Arriaga E A. Single cell analysis[J]. Analytical & Bioanalytical Chemistry, 2007, 387(1):1-2.
[6] Kruth H S. Flow cytometry:Rapid biochemical analysis of single cells[J]. Analytical Biochemistry, 1982, 125(2):225-242.
[7] Boeck G. Current status of flow cytometry in cell and molecular biology[J]. International Review of Cytology, 2001, 204(11):239-298.
[8] Perlman Z E, Altschuler S J. Multidimensional drug profiling by automated microscopy[J]. Science, 2004, 306(5699):1194-1198.
[9] Matioli G T, Niewisch H B. Electrophoresis of hemoglobin in single erythrocytes[J]. Science, 1965, 150(3705):1824-1826.
[10] Arcibal I G, Santillo M F, Ewing A G. Recent advances in capillary electrophoretic analysis of individual cells[J]. Analytical & Bioanalytical Chemistry, 2007, 387(1):51-57.
[11] Manz A, Graber N, Widmer H M. Miniaturized total chemical analysis systems:A novel concept for chemical sensing[J]. Sensors & Actuators B Chemical, 1990, 1(1):244-248.
[12] Feng X, Du W, Luo Q, et al. Microfluidic chip:Next-generation platform for systems biology[J]. Analytica Chimica Acta, 2009, 650(1):83-97.
[13] Yi C, Li C W, Ji S, et al. Microfluidics technology for manipulation and analysis of biological cells[J]. Analytica Chimica Acta, 2006, 560(1):1-23.
[14] Di Carlo D, Aghdam N, Lee L P. Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays[J]. Analytical Chemistry, 2006, 78(14):4925-4930.
[15] Di Carlo D, Wu L Y, Lee L P. Dynamic single cell culture array[J]. Lab on a Chip, 2006, 6(11):1445-1449.
[16] Wlodkowic D, Faley S, Zagnoni M, et al. Microfluidic single cell array cytometry for the analysis of tumour apoptosis[J].Analytical Chemistry, 2009, 81(13):5517-5523.
[17] Skelley A M, Kirak O, Suh H, et al. Microfluidic control of cell pairing and fusion[J]. Nature Methods, 2009, 6(2):147-152.
[18] Deutsch M, Deutsch A, Shirihai O, et al. A novel miniature cell retainer for correlative high-content analysis of individual untethered non-adherent cells[J]. Lab on a Chip, 2006, 6(8):995-1000.
[19] Komarova G A, Starodubtsev S G, Khokhlov A R. Investigation of physical-chemical properties of agarose hydrogels with embedded emulsions[J]. Journal of Physical Chemistry B, 2009, 113(45):14849-14853.
[20] Hu Y D, Azadi G, Ardekani A M. Microfluidic fabrication of shape-tunable alginate microgels:Effect of size and impact velocity[J]. Carbohydrate Polymers, 2015, 120:38-45.
[21] Pan J, Stephenson A L, Kazamia E, et al. Quantitative tracking of the growth of individual algal cells in microdroplet compartments[J]. Integrative Biology, 2011, 3(10):1043-1051.
[22] Richard N, Yong Z, Joe S, et al. Single-cell multiplex gene detection and sequencing with microfluidically generated agarose emulsions.[J]. Angewandte Chemie International Edition, 2011, 50(2):390-395.
[23] Ashkin A, Dziedzic J M, Yamane T. Optical trapping and manipulation of single cells using infrared laser beams[J]. Nature, 1987, 330(6150):769-771.
[24] Wang X L, Gou X, Chen S X, et al. Cell manipulation tool with combined microwell array and optical tweezers for cell isolation and deposition[J]. Journal of Micromechanics & Microengineering, 2013, 23(7):075006.
[25] Chen S, Wang X, Cheng J, et al. Artificially induced cell fusion by optical tweezers manipulation[C]//13th IEEE International Conference on Nanotechnology. Piscataway NJ:IEEE, 2013:333-336.
[26] Pohl H A. The Motion and Precipitation of Suspensoids in Divergent Electric Fields[J]. Journal of Applied Physics, 1951, 22(7):869-871.
[27] Zhang C, Khoshmanesh K, Mitchell A, et al. Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems[J]. Analytical & Bioanalytical Chemistry, 2010, 396(1):401-420.
[28] Hunt T P, Westervelt R M. Dielectrophoresis tweezers for single cell manipulation[J]. Biomedical Microdevices, 2006, 8(3):227-230.
[29] Voldman J, Gray M L, Toner M, et al. A MicrofabricationBased Dynamic Array Cytometer[J]. Analytical Chemistry, 2002, 74(16):3984-3990.
[30] Wu C, Chen R, Liu Y, et al. A planar dielectrophoresisbased chip for high-throughput cell pairing[J]. Lab on a Chip, 2017, 17(23):4008-4014.
[31] Petersson F, Nilsson A, Holm C, et al. Separation of lipids from blood utilizing ultrasonic standing waves in microfluidic channels[J]. Analyst, 2004, 129(10):938-943.
[32] Guo F, Mao Z, Chen Y, et al. Three-dimensional manipulation of single cells using surface acoustic waves[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(6):1522-1527.
[33] Zhao L B, Pan L, Zhang K, et al. Generation of Janus alginate hydrogel particles with magnetic anisotropy for cell encapsulation[J]. Lab on A Chip, 2009, 9(20):2981-2986.
[34] Nisisako T, Torii T, Takahashi T, et al. Synthesis of monodisperse bicolored janus particles with electrical anisotropy using a microfluidic co-flow system[J]. Advanced Materials, 2006, 18(9):1152-1156.
[35] Kang J H, Krause S, Tobin H, et al. A combined micromagnetic-microfluidic device for rapid capture and culture of rare circulating tumor cells[J]. Lab on a Chip, 2012, 12(12):2175-2181.